Salem Titouni;Idris Messaoudene;Yassine Himeur;Massinissa Belazzoug;Boualem Hammache;Shadi Atalla;Wathiq Mansoor
{"title":"多径和噪声情况下 JCR 窄带信号的高效频谱方法","authors":"Salem Titouni;Idris Messaoudene;Yassine Himeur;Massinissa Belazzoug;Boualem Hammache;Shadi Atalla;Wathiq Mansoor","doi":"10.1109/OJCOMS.2024.3470689","DOIUrl":null,"url":null,"abstract":"Joint Communication Radar (JCR) systems have garnered significant attention due to their ability to simultaneously perform communication and radar sensing tasks. However, in challenging environments, JCR signals are vulnerable to multipath propagation, resulting in signal degradation, interference, and reduced system performance. This paper explores the challenges posed by multipath effects on JCR signals and proposes novel mitigation techniques to enhance their robustness and reliability. The suggested method involves employing a spectral transformation to enhance the JCR-emitted signal, resulting in a significant improvement in the overall effectiveness of JCR systems. Consequently, the numerical implementation of the JCR system integrated with the proposed technique leads to improved performance metrics, including Multipath Error Envelope (MEE), Root Mean Square Error (RMSE), and Standard Deviation (STD). By effectively mitigating the adverse impacts of multipath propagation, the proposed methodologies enhance the robustness and accuracy of JCR systems, leading to improved communication reliability and radar sensing capabilities. Notably, the proposed method achieved a minimal Root Mean Square Error (RMSE) of just 0.05, marking a substantial enhancement in performance compared to existing methods.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6343-6352"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700591","citationCount":"0","resultStr":"{\"title\":\"An Efficient Spectral Approach for JCR Narrow Band Signals in Presence of Multipath and Noise\",\"authors\":\"Salem Titouni;Idris Messaoudene;Yassine Himeur;Massinissa Belazzoug;Boualem Hammache;Shadi Atalla;Wathiq Mansoor\",\"doi\":\"10.1109/OJCOMS.2024.3470689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint Communication Radar (JCR) systems have garnered significant attention due to their ability to simultaneously perform communication and radar sensing tasks. However, in challenging environments, JCR signals are vulnerable to multipath propagation, resulting in signal degradation, interference, and reduced system performance. This paper explores the challenges posed by multipath effects on JCR signals and proposes novel mitigation techniques to enhance their robustness and reliability. The suggested method involves employing a spectral transformation to enhance the JCR-emitted signal, resulting in a significant improvement in the overall effectiveness of JCR systems. Consequently, the numerical implementation of the JCR system integrated with the proposed technique leads to improved performance metrics, including Multipath Error Envelope (MEE), Root Mean Square Error (RMSE), and Standard Deviation (STD). By effectively mitigating the adverse impacts of multipath propagation, the proposed methodologies enhance the robustness and accuracy of JCR systems, leading to improved communication reliability and radar sensing capabilities. Notably, the proposed method achieved a minimal Root Mean Square Error (RMSE) of just 0.05, marking a substantial enhancement in performance compared to existing methods.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"6343-6352\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700591\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700591/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10700591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Efficient Spectral Approach for JCR Narrow Band Signals in Presence of Multipath and Noise
Joint Communication Radar (JCR) systems have garnered significant attention due to their ability to simultaneously perform communication and radar sensing tasks. However, in challenging environments, JCR signals are vulnerable to multipath propagation, resulting in signal degradation, interference, and reduced system performance. This paper explores the challenges posed by multipath effects on JCR signals and proposes novel mitigation techniques to enhance their robustness and reliability. The suggested method involves employing a spectral transformation to enhance the JCR-emitted signal, resulting in a significant improvement in the overall effectiveness of JCR systems. Consequently, the numerical implementation of the JCR system integrated with the proposed technique leads to improved performance metrics, including Multipath Error Envelope (MEE), Root Mean Square Error (RMSE), and Standard Deviation (STD). By effectively mitigating the adverse impacts of multipath propagation, the proposed methodologies enhance the robustness and accuracy of JCR systems, leading to improved communication reliability and radar sensing capabilities. Notably, the proposed method achieved a minimal Root Mean Square Error (RMSE) of just 0.05, marking a substantial enhancement in performance compared to existing methods.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.