在危机背景下建立概率样本:以 2022 年德国境内的乌克兰难民为例

Hans Walter Steinhauer, Jean Philippe Décieux, Manuel Siegert, Andreas Ette, Sabine Zinn
{"title":"在危机背景下建立概率样本:以 2022 年德国境内的乌克兰难民为例","authors":"Hans Walter Steinhauer,&nbsp;Jean Philippe Décieux,&nbsp;Manuel Siegert,&nbsp;Andreas Ette,&nbsp;Sabine Zinn","doi":"10.1007/s11943-024-00338-0","DOIUrl":null,"url":null,"abstract":"<div><p>Following Russia’s invasion of Ukraine in early 2022, more than one million refugees have arrived in Germany. These Ukrainian refugees differ in many aspects from Germany’s past forced migration experiences and there exists an urgent need for sound data and information for politics, practitioners, and academics. In response, the IAB-BiB/FReDA-BAMF-SOEP study was established to provide high-quality longitudinal data following a register-based probability sample. We detail on an approach for sampling refugees in brief time, making use of two different registers—the German population register and the central register of foreigners—and discuss the quality of the final sample with respect to potential selectivity of participation in the panel. Overall, we demonstrate the benefits and feasibility of establishing register-based samples even in the context of a geopolitical crisis and the necessity of sound data within brief time horizons. We provide guidance that can be followed for similar events in the future.</p></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"18 1","pages":"77 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-024-00338-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Establishing a probability sample in a crisis context: the example of Ukrainian refugees in Germany in 2022\",\"authors\":\"Hans Walter Steinhauer,&nbsp;Jean Philippe Décieux,&nbsp;Manuel Siegert,&nbsp;Andreas Ette,&nbsp;Sabine Zinn\",\"doi\":\"10.1007/s11943-024-00338-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following Russia’s invasion of Ukraine in early 2022, more than one million refugees have arrived in Germany. These Ukrainian refugees differ in many aspects from Germany’s past forced migration experiences and there exists an urgent need for sound data and information for politics, practitioners, and academics. In response, the IAB-BiB/FReDA-BAMF-SOEP study was established to provide high-quality longitudinal data following a register-based probability sample. We detail on an approach for sampling refugees in brief time, making use of two different registers—the German population register and the central register of foreigners—and discuss the quality of the final sample with respect to potential selectivity of participation in the panel. Overall, we demonstrate the benefits and feasibility of establishing register-based samples even in the context of a geopolitical crisis and the necessity of sound data within brief time horizons. We provide guidance that can be followed for similar events in the future.</p></div>\",\"PeriodicalId\":100134,\"journal\":{\"name\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"volume\":\"18 1\",\"pages\":\"77 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11943-024-00338-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11943-024-00338-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-024-00338-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2022 年初俄罗斯入侵乌克兰之后,已有 100 多万难民抵达德国。这些乌克兰难民在许多方面都不同于德国过去的被迫移民经历,因此迫切需要为政界、从业人员和学术界提供可靠的数据和信息。为此,IAB-BiB/FReDA-BAMF-SOEP 研究应运而生,通过基于登记的概率抽样,提供高质量的纵向数据。我们详细介绍了利用两种不同的登记册--德国人口登记册和外国人中央登记册--对难民进行短时间抽样的方法,并讨论了最终样本的质量以及参与小组的潜在选择性。总之,我们证明了在地缘政治危机的背景下建立基于登记册的样本的好处和可行性,以及在短时间内获得可靠数据的必要性。我们为今后类似的事件提供了可遵循的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing a probability sample in a crisis context: the example of Ukrainian refugees in Germany in 2022

Following Russia’s invasion of Ukraine in early 2022, more than one million refugees have arrived in Germany. These Ukrainian refugees differ in many aspects from Germany’s past forced migration experiences and there exists an urgent need for sound data and information for politics, practitioners, and academics. In response, the IAB-BiB/FReDA-BAMF-SOEP study was established to provide high-quality longitudinal data following a register-based probability sample. We detail on an approach for sampling refugees in brief time, making use of two different registers—the German population register and the central register of foreigners—and discuss the quality of the final sample with respect to potential selectivity of participation in the panel. Overall, we demonstrate the benefits and feasibility of establishing register-based samples even in the context of a geopolitical crisis and the necessity of sound data within brief time horizons. We provide guidance that can be followed for similar events in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1