{"title":"基于岛状薄膜的聚合物纳米复合材料的应变敏感特性","authors":"A. E. Varfolomeev","doi":"10.1134/S2635167623601389","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposites based on a gold island layer on the surface of elastomer films are prepared and their strain-sensitive properties in the region of hopping conductivity is investigated. It is shown that the strain-sensitive properties can be explained by the mechanism of hopping conductivity of the island film, taking into account the wide distribution function of the gaps between the gold islands. The time relaxation of the strain resistance is studied. It is shown that such island films are promising strain resistors with outstanding properties.</p></div>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"18 2 supplement","pages":"S250 - S255"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Sensitive Properties of Polymer Nanocomposites Based on Island Films\",\"authors\":\"A. E. Varfolomeev\",\"doi\":\"10.1134/S2635167623601389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocomposites based on a gold island layer on the surface of elastomer films are prepared and their strain-sensitive properties in the region of hopping conductivity is investigated. It is shown that the strain-sensitive properties can be explained by the mechanism of hopping conductivity of the island film, taking into account the wide distribution function of the gaps between the gold islands. The time relaxation of the strain resistance is studied. It is shown that such island films are promising strain resistors with outstanding properties.</p></div>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"18 2 supplement\",\"pages\":\"S250 - S255\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167623601389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167623601389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Strain-Sensitive Properties of Polymer Nanocomposites Based on Island Films
Nanocomposites based on a gold island layer on the surface of elastomer films are prepared and their strain-sensitive properties in the region of hopping conductivity is investigated. It is shown that the strain-sensitive properties can be explained by the mechanism of hopping conductivity of the island film, taking into account the wide distribution function of the gaps between the gold islands. The time relaxation of the strain resistance is studied. It is shown that such island films are promising strain resistors with outstanding properties.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.