Wei Wang;Zhanghao Yu;Yiwei Zou;Joshua E. Woods;Prahalad Chari;Yumin Su;Jacob T. Robinson;Kaiyuan Yang
{"title":"毫米磁电生物医学植入物的全向无线功率传输","authors":"Wei Wang;Zhanghao Yu;Yiwei Zou;Joshua E. Woods;Prahalad Chari;Yumin Su;Jacob T. Robinson;Kaiyuan Yang","doi":"10.1109/JSSC.2024.3464533","DOIUrl":null,"url":null,"abstract":"Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today’s devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and “magnetic field steering” technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low-power system-on-chip (SoC) powered by an ME film, a TX with a custom three-channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves −161 dBm/Hz input-referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90° rotation from the ideal position, our omnidirectional WPT system achieves \n<inline-formula> <tex-math>$6.8{ \\times }$ </tex-math></inline-formula>\n higher power transfer efficiency (PTE) than a single-coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2% from using ideal control.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"59 11","pages":"3599-3611"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants\",\"authors\":\"Wei Wang;Zhanghao Yu;Yiwei Zou;Joshua E. Woods;Prahalad Chari;Yumin Su;Jacob T. Robinson;Kaiyuan Yang\",\"doi\":\"10.1109/JSSC.2024.3464533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today’s devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and “magnetic field steering” technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low-power system-on-chip (SoC) powered by an ME film, a TX with a custom three-channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves −161 dBm/Hz input-referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90° rotation from the ideal position, our omnidirectional WPT system achieves \\n<inline-formula> <tex-math>$6.8{ \\\\times }$ </tex-math></inline-formula>\\n higher power transfer efficiency (PTE) than a single-coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2% from using ideal control.\",\"PeriodicalId\":13129,\"journal\":{\"name\":\"IEEE Journal of Solid-state Circuits\",\"volume\":\"59 11\",\"pages\":\"3599-3611\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Solid-state Circuits\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714003/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714003/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today’s devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and “magnetic field steering” technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low-power system-on-chip (SoC) powered by an ME film, a TX with a custom three-channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves −161 dBm/Hz input-referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90° rotation from the ideal position, our omnidirectional WPT system achieves
$6.8{ \times }$
higher power transfer efficiency (PTE) than a single-coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2% from using ideal control.
期刊介绍:
The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.