Zhixian Tang, Ruoheng Wang, Edward Chung, Weihua Gu, Hong Zhu
{"title":"基于代用交通信号优化的对抗性多样化深度集合方法","authors":"Zhixian Tang, Ruoheng Wang, Edward Chung, Weihua Gu, Hong Zhu","doi":"10.1111/mice.13354","DOIUrl":null,"url":null,"abstract":"Surrogate‐based traffic signal optimization (TSO) is a computationally efficient alternative to simulation‐based TSO. By replacing the simulation‐based objective function, a surrogate model can quickly identify solutions by searching for extreme points on its response surface. As a popular surrogate model, the ensemble of multiple diverse deep learning models can approximate complicated systems with a strong generalizability. However, existing ensemble methods barely focus on strengthening the prediction of extreme points, which we found can be realized by further diversifying base learners in the ensemble. The study proposes an adversarial diverse ensemble (ADE) method for online TSO with limited computational resources, comprising two stages: In the offline stage, base extractors are diversified with unlabeled data by a designed adversarial diversity training algorithm; in the online stage, base predictors are trained in parallel with limited labeled data, and the ensemble then serves as the surrogate model to search for solutions iteratively for TSO. First, it is demonstrated that the prediction accuracy on extreme points, and associated solution quality, can be constantly improved with base learners’ diversity enhanced by ADE. Case studies of TSO conducted on a four‐intersection arterial further demonstrate the superior solution quality and computational efficiency of the ADE surrogate model in a wide range of traffic scenarios. Moreover, a large‐scale online TSO experiment under dynamic traffic demand proves ADE's effectiveness in practical applications.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"228 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adversarial diverse deep ensemble approach for surrogate‐based traffic signal optimization\",\"authors\":\"Zhixian Tang, Ruoheng Wang, Edward Chung, Weihua Gu, Hong Zhu\",\"doi\":\"10.1111/mice.13354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surrogate‐based traffic signal optimization (TSO) is a computationally efficient alternative to simulation‐based TSO. By replacing the simulation‐based objective function, a surrogate model can quickly identify solutions by searching for extreme points on its response surface. As a popular surrogate model, the ensemble of multiple diverse deep learning models can approximate complicated systems with a strong generalizability. However, existing ensemble methods barely focus on strengthening the prediction of extreme points, which we found can be realized by further diversifying base learners in the ensemble. The study proposes an adversarial diverse ensemble (ADE) method for online TSO with limited computational resources, comprising two stages: In the offline stage, base extractors are diversified with unlabeled data by a designed adversarial diversity training algorithm; in the online stage, base predictors are trained in parallel with limited labeled data, and the ensemble then serves as the surrogate model to search for solutions iteratively for TSO. First, it is demonstrated that the prediction accuracy on extreme points, and associated solution quality, can be constantly improved with base learners’ diversity enhanced by ADE. Case studies of TSO conducted on a four‐intersection arterial further demonstrate the superior solution quality and computational efficiency of the ADE surrogate model in a wide range of traffic scenarios. Moreover, a large‐scale online TSO experiment under dynamic traffic demand proves ADE's effectiveness in practical applications.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"228 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13354\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An adversarial diverse deep ensemble approach for surrogate‐based traffic signal optimization
Surrogate‐based traffic signal optimization (TSO) is a computationally efficient alternative to simulation‐based TSO. By replacing the simulation‐based objective function, a surrogate model can quickly identify solutions by searching for extreme points on its response surface. As a popular surrogate model, the ensemble of multiple diverse deep learning models can approximate complicated systems with a strong generalizability. However, existing ensemble methods barely focus on strengthening the prediction of extreme points, which we found can be realized by further diversifying base learners in the ensemble. The study proposes an adversarial diverse ensemble (ADE) method for online TSO with limited computational resources, comprising two stages: In the offline stage, base extractors are diversified with unlabeled data by a designed adversarial diversity training algorithm; in the online stage, base predictors are trained in parallel with limited labeled data, and the ensemble then serves as the surrogate model to search for solutions iteratively for TSO. First, it is demonstrated that the prediction accuracy on extreme points, and associated solution quality, can be constantly improved with base learners’ diversity enhanced by ADE. Case studies of TSO conducted on a four‐intersection arterial further demonstrate the superior solution quality and computational efficiency of the ADE surrogate model in a wide range of traffic scenarios. Moreover, a large‐scale online TSO experiment under dynamic traffic demand proves ADE's effectiveness in practical applications.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.