通过几何重构 F-Co-O 活性位点调整 Co3O4 的 Co 预氧化过程,促进酸性水的氧化作用

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-10-12 DOI:10.1039/D4EE03982C
Yi Wang, Pu Guo, Jing Zhou, Bing Bai, Yifan Li, Mingrun Li, Pratteek Das, Xianhong Wu, Linjuan Zhang, Yi Cui, Jianping Xiao and Zhong-Shuai Wu
{"title":"通过几何重构 F-Co-O 活性位点调整 Co3O4 的 Co 预氧化过程,促进酸性水的氧化作用","authors":"Yi Wang, Pu Guo, Jing Zhou, Bing Bai, Yifan Li, Mingrun Li, Pratteek Das, Xianhong Wu, Linjuan Zhang, Yi Cui, Jianping Xiao and Zhong-Shuai Wu","doi":"10.1039/D4EE03982C","DOIUrl":null,"url":null,"abstract":"<p >Cobalt-based oxides are potential alternatives to noble metal catalysts for the acidic oxygen evolution reaction (OER); however, their activity and stability are limited by the surface reorganization of cobalt oxide into the Co(<small>IV</small>)<img>O active phase of pure Co<small><sub>3</sub></small>O<small><sub>4</sub></small> with retarded OER kinetics. Herein, we report a geometrically reconstructed active site F–Co–O of Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> phase by forming an F electron-dominated sharing effect, which prominently regulates the Co pre-OER feature of the pure Co<small><sub>3</sub></small>O<small><sub>4</sub></small> catalyst, and displays an unconventional electrochemical behavior for remarkably boosted acidic water oxidation. The Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> catalyst exhibits a relatively low overpotential of 349 mV at 10 mA cm<small><sup>−2</sup></small> and operation durability of 120 h at 100 mA cm<small><sup>−2</sup></small> for the acidic OER, making it one of the best-performing non-noble metal catalysts. The in-depth mechanistic analysis <em>via</em> quasi <em>in situ/operando</em> techniques and density functional theory proves the ability of F to adjust the Co pre-oxidation reaction on Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> and reproduces the remarkable activity of the OER over Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small>, as well as detailing the switchable rate-determining step and catalytic mechanisms for exceptionally enhanced performance. This work opens feasible avenues for designing acidic OER catalysts of non-precious metal oxides toward commercial water electrolysis.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 22","pages":" 8820-8828"},"PeriodicalIF":32.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Co pre-oxidation process of Co3O4via geometrically reconstructed F–Co–O active sites for boosting acidic water oxidation†\",\"authors\":\"Yi Wang, Pu Guo, Jing Zhou, Bing Bai, Yifan Li, Mingrun Li, Pratteek Das, Xianhong Wu, Linjuan Zhang, Yi Cui, Jianping Xiao and Zhong-Shuai Wu\",\"doi\":\"10.1039/D4EE03982C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cobalt-based oxides are potential alternatives to noble metal catalysts for the acidic oxygen evolution reaction (OER); however, their activity and stability are limited by the surface reorganization of cobalt oxide into the Co(<small>IV</small>)<img>O active phase of pure Co<small><sub>3</sub></small>O<small><sub>4</sub></small> with retarded OER kinetics. Herein, we report a geometrically reconstructed active site F–Co–O of Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> phase by forming an F electron-dominated sharing effect, which prominently regulates the Co pre-OER feature of the pure Co<small><sub>3</sub></small>O<small><sub>4</sub></small> catalyst, and displays an unconventional electrochemical behavior for remarkably boosted acidic water oxidation. The Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> catalyst exhibits a relatively low overpotential of 349 mV at 10 mA cm<small><sup>−2</sup></small> and operation durability of 120 h at 100 mA cm<small><sup>−2</sup></small> for the acidic OER, making it one of the best-performing non-noble metal catalysts. The in-depth mechanistic analysis <em>via</em> quasi <em>in situ/operando</em> techniques and density functional theory proves the ability of F to adjust the Co pre-oxidation reaction on Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small> and reproduces the remarkable activity of the OER over Co<small><sub>3</sub></small>O<small><sub>4−<em>x</em></sub></small>F<small><sub><em>x</em></sub></small>, as well as detailing the switchable rate-determining step and catalytic mechanisms for exceptionally enhanced performance. This work opens feasible avenues for designing acidic OER catalysts of non-precious metal oxides toward commercial water electrolysis.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 22\",\"pages\":\" 8820-8828\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03982c\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03982c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钴基氧化物是酸性氧进化反应(OER)中贵金属催化剂的潜在替代品,然而,由于氧化钴表面重组为纯 Co3O4 的 Co(IV)=O 活性相,其活性和稳定性受到限制,OER 动力学也随之减慢。在此,我们报告了一种通过形成 F 电子主导的共享效应而几何重构的 Co3O4-xFx 相 F-Co-O 活性位点,它显著调节了纯 Co3O4 催化剂的 Co 预 OER 特性,并在显著促进酸性水氧化方面表现出非常规的电化学行为。Co3O4-xFx 催化剂在 10 mA cm-2 条件下的过电位相对较低,仅为 349 mV,在 100 mA cm-2 条件下的酸性 OER 运行耐久性可达 120 h,是性能最好的非贵金属催化剂之一。通过准原位/运算技术和密度泛函理论进行的深入机理分析证明了 F 能够调节 Co3O4-xFx 上的钴预氧化反应,再现了 OER 在 Co3O4-xFx 上的显著活性,并详细说明了可切换的速率决定步骤和催化机理,从而使性能得到了极大的提高。这项工作为设计非贵金属氧化物酸性 OER 催化剂以实现商业水电解开辟了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the Co pre-oxidation process of Co3O4via geometrically reconstructed F–Co–O active sites for boosting acidic water oxidation†

Cobalt-based oxides are potential alternatives to noble metal catalysts for the acidic oxygen evolution reaction (OER); however, their activity and stability are limited by the surface reorganization of cobalt oxide into the Co(IV)O active phase of pure Co3O4 with retarded OER kinetics. Herein, we report a geometrically reconstructed active site F–Co–O of Co3O4−xFx phase by forming an F electron-dominated sharing effect, which prominently regulates the Co pre-OER feature of the pure Co3O4 catalyst, and displays an unconventional electrochemical behavior for remarkably boosted acidic water oxidation. The Co3O4−xFx catalyst exhibits a relatively low overpotential of 349 mV at 10 mA cm−2 and operation durability of 120 h at 100 mA cm−2 for the acidic OER, making it one of the best-performing non-noble metal catalysts. The in-depth mechanistic analysis via quasi in situ/operando techniques and density functional theory proves the ability of F to adjust the Co pre-oxidation reaction on Co3O4−xFx and reproduces the remarkable activity of the OER over Co3O4−xFx, as well as detailing the switchable rate-determining step and catalytic mechanisms for exceptionally enhanced performance. This work opens feasible avenues for designing acidic OER catalysts of non-precious metal oxides toward commercial water electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Correction: Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy Quenching-induced lattice modifications endowing Li-rich layered cathodes with ultralow voltage decay and long life Digitally-assisted structure design of a large-size proton exchange membrane fuel cell Non-Fused Core Linked Star-Shaped Oligomer Acceptors for over 19% Efficiency and Stable Binary Organic Solar Cells Enhanced bipolar membrane for durable ampere-level water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1