AtCAF:基于注意力的因果关系感知融合网络,用于多模态情感分析

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-10-02 DOI:10.1016/j.inffus.2024.102725
Changqin Huang , Jili Chen , Qionghao Huang , Shijin Wang , Yaxin Tu , Xiaodi Huang
{"title":"AtCAF:基于注意力的因果关系感知融合网络,用于多模态情感分析","authors":"Changqin Huang ,&nbsp;Jili Chen ,&nbsp;Qionghao Huang ,&nbsp;Shijin Wang ,&nbsp;Yaxin Tu ,&nbsp;Xiaodi Huang","doi":"10.1016/j.inffus.2024.102725","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal sentiment analysis (MSA) involves interpreting sentiment using various sensory data modalities. Traditional MSA models often overlook causality between modalities, resulting in spurious correlations and ineffective cross-modal attention. To address these limitations, we propose the <strong>At</strong>tention-based <strong>C</strong>ausality-<strong>A</strong>ware <strong>F</strong>usion (AtCAF) network from a causal perspective. To capture a causality-aware representation of text, we introduce the <strong>C</strong>ausality-<strong>A</strong>ware <strong>T</strong>ext <strong>D</strong>ebiasing <strong>M</strong>odule (CATDM) utilizing the front-door adjustment. Furthermore, we employ the <strong>C</strong>ounterfactual <strong>C</strong>r<strong>o</strong>ss-modal <strong>At</strong>tention (CCoAt) module integrate causal information in modal fusion, thereby enhancing the quality of aggregation by incorporating more causality-aware cues. AtCAF achieves state-of-the-art performance across three datasets, demonstrating significant improvements in both standard and Out-Of-Distribution (OOD) settings. Specifically, AtCAF outperforms existing models with a 1.5% improvement in ACC-2 on the CMU-MOSI dataset, a 0.95% increase in ACC-7 on the CMU-MOSEI dataset under normal conditions, and a 1.47% enhancement under OOD conditions. CATDM improves category cohesion in feature space, while CCoAt accurately classifies ambiguous samples through context filtering. Overall, AtCAF offers a robust solution for social media sentiment analysis, delivering reliable insights by effectively addressing data imbalance. The code is available at <span><span>https://github.com/TheShy-Dream/AtCAF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102725"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AtCAF: Attention-based causality-aware fusion network for multimodal sentiment analysis\",\"authors\":\"Changqin Huang ,&nbsp;Jili Chen ,&nbsp;Qionghao Huang ,&nbsp;Shijin Wang ,&nbsp;Yaxin Tu ,&nbsp;Xiaodi Huang\",\"doi\":\"10.1016/j.inffus.2024.102725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimodal sentiment analysis (MSA) involves interpreting sentiment using various sensory data modalities. Traditional MSA models often overlook causality between modalities, resulting in spurious correlations and ineffective cross-modal attention. To address these limitations, we propose the <strong>At</strong>tention-based <strong>C</strong>ausality-<strong>A</strong>ware <strong>F</strong>usion (AtCAF) network from a causal perspective. To capture a causality-aware representation of text, we introduce the <strong>C</strong>ausality-<strong>A</strong>ware <strong>T</strong>ext <strong>D</strong>ebiasing <strong>M</strong>odule (CATDM) utilizing the front-door adjustment. Furthermore, we employ the <strong>C</strong>ounterfactual <strong>C</strong>r<strong>o</strong>ss-modal <strong>At</strong>tention (CCoAt) module integrate causal information in modal fusion, thereby enhancing the quality of aggregation by incorporating more causality-aware cues. AtCAF achieves state-of-the-art performance across three datasets, demonstrating significant improvements in both standard and Out-Of-Distribution (OOD) settings. Specifically, AtCAF outperforms existing models with a 1.5% improvement in ACC-2 on the CMU-MOSI dataset, a 0.95% increase in ACC-7 on the CMU-MOSEI dataset under normal conditions, and a 1.47% enhancement under OOD conditions. CATDM improves category cohesion in feature space, while CCoAt accurately classifies ambiguous samples through context filtering. Overall, AtCAF offers a robust solution for social media sentiment analysis, delivering reliable insights by effectively addressing data imbalance. The code is available at <span><span>https://github.com/TheShy-Dream/AtCAF</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"114 \",\"pages\":\"Article 102725\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005037\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005037","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多模态情感分析(MSA)涉及使用各种感官数据模态解读情感。传统的 MSA 模型通常会忽略模态之间的因果关系,从而导致虚假关联和无效的跨模态关注。为了解决这些局限性,我们从因果关系的角度出发,提出了基于注意力的因果关系感知融合(AtCAF)网络。为了捕捉文本的因果感知表征,我们引入了利用前门调整的因果感知文本去重模块(CATDM)。此外,我们还采用了反事实跨模态注意(CCoAt)模块,在模态融合中整合因果信息,从而通过整合更多的因果感知线索来提高聚合质量。AtCAF 在三个数据集上实现了最先进的性能,在标准和分布外(OOD)设置中都有显著改进。具体来说,在 CMU-MOSI 数据集上,AtCAF 的 ACC-2 性能提高了 1.5%,在 CMU-MOSEI 数据集上,ACC-7 在正常条件下提高了 0.95%,而在 OOD 条件下提高了 1.47%。CATDM 提高了特征空间中的类别内聚力,而 CCoAt 则通过上下文过滤准确地对模糊样本进行分类。总之,AtCAF 为社交媒体情感分析提供了一个强大的解决方案,通过有效解决数据不平衡问题,提供可靠的洞察力。代码可在 https://github.com/TheShy-Dream/AtCAF 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AtCAF: Attention-based causality-aware fusion network for multimodal sentiment analysis
Multimodal sentiment analysis (MSA) involves interpreting sentiment using various sensory data modalities. Traditional MSA models often overlook causality between modalities, resulting in spurious correlations and ineffective cross-modal attention. To address these limitations, we propose the Attention-based Causality-Aware Fusion (AtCAF) network from a causal perspective. To capture a causality-aware representation of text, we introduce the Causality-Aware Text Debiasing Module (CATDM) utilizing the front-door adjustment. Furthermore, we employ the Counterfactual Cross-modal Attention (CCoAt) module integrate causal information in modal fusion, thereby enhancing the quality of aggregation by incorporating more causality-aware cues. AtCAF achieves state-of-the-art performance across three datasets, demonstrating significant improvements in both standard and Out-Of-Distribution (OOD) settings. Specifically, AtCAF outperforms existing models with a 1.5% improvement in ACC-2 on the CMU-MOSI dataset, a 0.95% increase in ACC-7 on the CMU-MOSEI dataset under normal conditions, and a 1.47% enhancement under OOD conditions. CATDM improves category cohesion in feature space, while CCoAt accurately classifies ambiguous samples through context filtering. Overall, AtCAF offers a robust solution for social media sentiment analysis, delivering reliable insights by effectively addressing data imbalance. The code is available at https://github.com/TheShy-Dream/AtCAF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Pretraining graph transformer for molecular representation with fusion of multimodal information Pan-Mamba: Effective pan-sharpening with state space model An autoencoder-based confederated clustering leveraging a robust model fusion strategy for federated unsupervised learning FairDPFL-SCS: Fair Dynamic Personalized Federated Learning with strategic client selection for improved accuracy and fairness M-IPISincNet: An explainable multi-source physics-informed neural network based on improved SincNet for rolling bearings fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1