Yazan M. Al-Rawashdeh , Mohammad Al Saaideh , Marcel F. Heertjes , Tom Oomen , Mohammad Al Janaideh
{"title":"使用非线性微定位执行器的工业长行程运动系统的无模型控制","authors":"Yazan M. Al-Rawashdeh , Mohammad Al Saaideh , Marcel F. Heertjes , Tom Oomen , Mohammad Al Janaideh","doi":"10.1016/j.mechatronics.2024.103257","DOIUrl":null,"url":null,"abstract":"<div><div>Fine positioning stages based on piezoceramic materials have found widespread success in various applications due to their attractive features. However, the inherent hard nonlinear behavior of piezoelectric actuators complicates modeling, control, and synchronization processes. In this study, adopting an input–output perspective, we propose and experimentally verify a model-free control and synchronization technique for these stages. Specifically, our approach introduces a model-free trajectory generator that adjusts the desired trajectory using position measurement data to minimize tracking errors. We validate this technique using a representative precision motion system, consisting of a planner stage and a uni-axial fine stage, under step-and-scan trajectories commonly employed in wafer scanners. Remarkably, despite its simplicity, the proposed design procedure can be seamlessly extended to other robotics and automation applications.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103257"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-free control for an industrial long-stroke motion system with a nonlinear micropositioning actuator\",\"authors\":\"Yazan M. Al-Rawashdeh , Mohammad Al Saaideh , Marcel F. Heertjes , Tom Oomen , Mohammad Al Janaideh\",\"doi\":\"10.1016/j.mechatronics.2024.103257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fine positioning stages based on piezoceramic materials have found widespread success in various applications due to their attractive features. However, the inherent hard nonlinear behavior of piezoelectric actuators complicates modeling, control, and synchronization processes. In this study, adopting an input–output perspective, we propose and experimentally verify a model-free control and synchronization technique for these stages. Specifically, our approach introduces a model-free trajectory generator that adjusts the desired trajectory using position measurement data to minimize tracking errors. We validate this technique using a representative precision motion system, consisting of a planner stage and a uni-axial fine stage, under step-and-scan trajectories commonly employed in wafer scanners. Remarkably, despite its simplicity, the proposed design procedure can be seamlessly extended to other robotics and automation applications.</div></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"104 \",\"pages\":\"Article 103257\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824001223\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001223","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Model-free control for an industrial long-stroke motion system with a nonlinear micropositioning actuator
Fine positioning stages based on piezoceramic materials have found widespread success in various applications due to their attractive features. However, the inherent hard nonlinear behavior of piezoelectric actuators complicates modeling, control, and synchronization processes. In this study, adopting an input–output perspective, we propose and experimentally verify a model-free control and synchronization technique for these stages. Specifically, our approach introduces a model-free trajectory generator that adjusts the desired trajectory using position measurement data to minimize tracking errors. We validate this technique using a representative precision motion system, consisting of a planner stage and a uni-axial fine stage, under step-and-scan trajectories commonly employed in wafer scanners. Remarkably, despite its simplicity, the proposed design procedure can be seamlessly extended to other robotics and automation applications.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.