Charlotte van der Nagel , Deena Hannoun , Todd Tietjen
{"title":"二十年严重干旱期间米德湖(美国内华达州-亚利桑那州)稳定的浮游植物群落组成","authors":"Charlotte van der Nagel , Deena Hannoun , Todd Tietjen","doi":"10.1016/j.ese.2024.100491","DOIUrl":null,"url":null,"abstract":"<div><div>Lake Mead, a large reservoir on the Colorado River and a critical drinking water source for the southwestern United States, typically exhibits high water quality, characterized by low nutrient and chlorophyll-<em>a</em> concentrations. This stability persists despite the inflow of highly treated wastewater since the 1960s and significant water level declines since 2000, driven by the ongoing Megadrought and basin-wide consumptive use. Such environmental changes may alter phytoplankton communities, potentially leading to increased cyanobacteria abundance, which could negatively impact water quality and the aquatic ecosystem through harmful algal blooms and toxin production. Here we analyzed 17 years of phytoplankton community structure and chlorophyll-<em>a</em> concentrations in Lake Mead, alongside quantitative water quality data, including nutrients, temperature, and water clarity, to assess the effects of environmental changes on phytoplankton communities. Contrary to the hypothesis that cyanobacteria abundance would have increased throughout the reservoir, our results indicate that phytoplankton community structures have remained largely stable, except for shallow areas where increases in temperature or phosphorus levels were observed. Additionally, we evaluated machine learning models for predicting changes in phytoplankton community structures. While the models confidently predicted changes in total phytoplankton biovolume and chlorophyll-<em>a</em> concentrations within the input parameter boundaries, predictions of peak biovolume showed considerable uncertainty, emphasizing the importance of incorporating uncertainty analysis in forecasting and communicating results. This study underscores the current buffering capacity of large, oligotrophic reservoirs like Lake Mead to maintain stable phytoplankton communities despite environmental changes. However, it also highlights the potential for significant community shifts if this buffering capacity is exceeded.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100491"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable phytoplankton community compositions in Lake Mead (Nevada-Arizona, USA) during two decades of severe drought\",\"authors\":\"Charlotte van der Nagel , Deena Hannoun , Todd Tietjen\",\"doi\":\"10.1016/j.ese.2024.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lake Mead, a large reservoir on the Colorado River and a critical drinking water source for the southwestern United States, typically exhibits high water quality, characterized by low nutrient and chlorophyll-<em>a</em> concentrations. This stability persists despite the inflow of highly treated wastewater since the 1960s and significant water level declines since 2000, driven by the ongoing Megadrought and basin-wide consumptive use. Such environmental changes may alter phytoplankton communities, potentially leading to increased cyanobacteria abundance, which could negatively impact water quality and the aquatic ecosystem through harmful algal blooms and toxin production. Here we analyzed 17 years of phytoplankton community structure and chlorophyll-<em>a</em> concentrations in Lake Mead, alongside quantitative water quality data, including nutrients, temperature, and water clarity, to assess the effects of environmental changes on phytoplankton communities. Contrary to the hypothesis that cyanobacteria abundance would have increased throughout the reservoir, our results indicate that phytoplankton community structures have remained largely stable, except for shallow areas where increases in temperature or phosphorus levels were observed. Additionally, we evaluated machine learning models for predicting changes in phytoplankton community structures. While the models confidently predicted changes in total phytoplankton biovolume and chlorophyll-<em>a</em> concentrations within the input parameter boundaries, predictions of peak biovolume showed considerable uncertainty, emphasizing the importance of incorporating uncertainty analysis in forecasting and communicating results. This study underscores the current buffering capacity of large, oligotrophic reservoirs like Lake Mead to maintain stable phytoplankton communities despite environmental changes. However, it also highlights the potential for significant community shifts if this buffering capacity is exceeded.</div></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"23 \",\"pages\":\"Article 100491\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424001054\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424001054","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Stable phytoplankton community compositions in Lake Mead (Nevada-Arizona, USA) during two decades of severe drought
Lake Mead, a large reservoir on the Colorado River and a critical drinking water source for the southwestern United States, typically exhibits high water quality, characterized by low nutrient and chlorophyll-a concentrations. This stability persists despite the inflow of highly treated wastewater since the 1960s and significant water level declines since 2000, driven by the ongoing Megadrought and basin-wide consumptive use. Such environmental changes may alter phytoplankton communities, potentially leading to increased cyanobacteria abundance, which could negatively impact water quality and the aquatic ecosystem through harmful algal blooms and toxin production. Here we analyzed 17 years of phytoplankton community structure and chlorophyll-a concentrations in Lake Mead, alongside quantitative water quality data, including nutrients, temperature, and water clarity, to assess the effects of environmental changes on phytoplankton communities. Contrary to the hypothesis that cyanobacteria abundance would have increased throughout the reservoir, our results indicate that phytoplankton community structures have remained largely stable, except for shallow areas where increases in temperature or phosphorus levels were observed. Additionally, we evaluated machine learning models for predicting changes in phytoplankton community structures. While the models confidently predicted changes in total phytoplankton biovolume and chlorophyll-a concentrations within the input parameter boundaries, predictions of peak biovolume showed considerable uncertainty, emphasizing the importance of incorporating uncertainty analysis in forecasting and communicating results. This study underscores the current buffering capacity of large, oligotrophic reservoirs like Lake Mead to maintain stable phytoplankton communities despite environmental changes. However, it also highlights the potential for significant community shifts if this buffering capacity is exceeded.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.