Ruchika Chauhan , Ronen Fogel , Cristina Purcarea , Georgiana Necula-Petrareanu , Pablo Fanjul-Bolado , David Ibañez , Alina Vasilescu , Roberta Maria Banciu , Janice Limson
{"title":"不同氧化还原探针中炭黑的电化学特性及其在电化学传感中的应用","authors":"Ruchika Chauhan , Ronen Fogel , Cristina Purcarea , Georgiana Necula-Petrareanu , Pablo Fanjul-Bolado , David Ibañez , Alina Vasilescu , Roberta Maria Banciu , Janice Limson","doi":"10.1016/j.cartre.2024.100408","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon black - materials rich in carbon nanostructures - have been successfully applied as modifiers of electrochemical transducers, rivalling other carbon nanomaterials for cost and ease-of-use. Despite the remarkable promise of this nanomaterial, no study has yet comparatively characterised a wide range of different grades of carbon black for their utility in electrochemical sensors. Here, we explore several commonly-studied carbon black grades (N220, N234, N326, N330, N339, N375, N550, N660 and Lamp Black-101), alongside relatively newer grades (Printex®-200, Printex® G, Printex® XE-2B, and Printex® Zeta) for their application in electrochemical sensors. The effects of coating glassy carbon electrodes with carbon black on electrode performance were studied by cyclic voltammetry using three redox probes: ferri-/ferrocyanide (anionic probe molecules), ferrocenemethanol (neutral) and hexaammineruthenium (cationic). Raman Spectroscopy characterisation of the different grades associated a lower degree of graphitisation with superior electrode modifiers. Generally, modification increased the anodic peak current for ferri-/ferrocyanide probes; and lowered anodic potential for ferri-/ferrocyanide and hexaammineruthenium probes. Increases in peak current and potential observed at ferrocenemethanol are consistent with the increased tendency for this probe to adsorb to the surface of modified electrodes. N330 and Printex® XE-2B displayed the best electrocatalytic properties in terms of enhanced peak currents and lowered anodic overpotentials for the redox probes. CB grades were used to modify screen-printed carbon electrodes and the obtained sensors examined for anodic detection of reduced nicotinamide adenine dinucleotide (NADH) cofactor by cyclic voltammetry. Printex® XE-2B significantly improved the detection of NADH and was further used for chronoamperometric detection of NADH at low overpotentials. Grades N220, N375, N550 and P-G showed their suitability as enzyme scaffolds for sensor fabrication, as determined by their preservation of the activity of a NAD-dependent aldehyde dehydrogenase.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100408"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical characterization of carbon black in different redox probes and their application in electrochemical sensing\",\"authors\":\"Ruchika Chauhan , Ronen Fogel , Cristina Purcarea , Georgiana Necula-Petrareanu , Pablo Fanjul-Bolado , David Ibañez , Alina Vasilescu , Roberta Maria Banciu , Janice Limson\",\"doi\":\"10.1016/j.cartre.2024.100408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon black - materials rich in carbon nanostructures - have been successfully applied as modifiers of electrochemical transducers, rivalling other carbon nanomaterials for cost and ease-of-use. Despite the remarkable promise of this nanomaterial, no study has yet comparatively characterised a wide range of different grades of carbon black for their utility in electrochemical sensors. Here, we explore several commonly-studied carbon black grades (N220, N234, N326, N330, N339, N375, N550, N660 and Lamp Black-101), alongside relatively newer grades (Printex®-200, Printex® G, Printex® XE-2B, and Printex® Zeta) for their application in electrochemical sensors. The effects of coating glassy carbon electrodes with carbon black on electrode performance were studied by cyclic voltammetry using three redox probes: ferri-/ferrocyanide (anionic probe molecules), ferrocenemethanol (neutral) and hexaammineruthenium (cationic). Raman Spectroscopy characterisation of the different grades associated a lower degree of graphitisation with superior electrode modifiers. Generally, modification increased the anodic peak current for ferri-/ferrocyanide probes; and lowered anodic potential for ferri-/ferrocyanide and hexaammineruthenium probes. Increases in peak current and potential observed at ferrocenemethanol are consistent with the increased tendency for this probe to adsorb to the surface of modified electrodes. N330 and Printex® XE-2B displayed the best electrocatalytic properties in terms of enhanced peak currents and lowered anodic overpotentials for the redox probes. CB grades were used to modify screen-printed carbon electrodes and the obtained sensors examined for anodic detection of reduced nicotinamide adenine dinucleotide (NADH) cofactor by cyclic voltammetry. Printex® XE-2B significantly improved the detection of NADH and was further used for chronoamperometric detection of NADH at low overpotentials. Grades N220, N375, N550 and P-G showed their suitability as enzyme scaffolds for sensor fabrication, as determined by their preservation of the activity of a NAD-dependent aldehyde dehydrogenase.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100408\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrochemical characterization of carbon black in different redox probes and their application in electrochemical sensing
Carbon black - materials rich in carbon nanostructures - have been successfully applied as modifiers of electrochemical transducers, rivalling other carbon nanomaterials for cost and ease-of-use. Despite the remarkable promise of this nanomaterial, no study has yet comparatively characterised a wide range of different grades of carbon black for their utility in electrochemical sensors. Here, we explore several commonly-studied carbon black grades (N220, N234, N326, N330, N339, N375, N550, N660 and Lamp Black-101), alongside relatively newer grades (Printex®-200, Printex® G, Printex® XE-2B, and Printex® Zeta) for their application in electrochemical sensors. The effects of coating glassy carbon electrodes with carbon black on electrode performance were studied by cyclic voltammetry using three redox probes: ferri-/ferrocyanide (anionic probe molecules), ferrocenemethanol (neutral) and hexaammineruthenium (cationic). Raman Spectroscopy characterisation of the different grades associated a lower degree of graphitisation with superior electrode modifiers. Generally, modification increased the anodic peak current for ferri-/ferrocyanide probes; and lowered anodic potential for ferri-/ferrocyanide and hexaammineruthenium probes. Increases in peak current and potential observed at ferrocenemethanol are consistent with the increased tendency for this probe to adsorb to the surface of modified electrodes. N330 and Printex® XE-2B displayed the best electrocatalytic properties in terms of enhanced peak currents and lowered anodic overpotentials for the redox probes. CB grades were used to modify screen-printed carbon electrodes and the obtained sensors examined for anodic detection of reduced nicotinamide adenine dinucleotide (NADH) cofactor by cyclic voltammetry. Printex® XE-2B significantly improved the detection of NADH and was further used for chronoamperometric detection of NADH at low overpotentials. Grades N220, N375, N550 and P-G showed their suitability as enzyme scaffolds for sensor fabrication, as determined by their preservation of the activity of a NAD-dependent aldehyde dehydrogenase.