通过激光粉末床熔融对元素原料粉末进行原位合金化,实现非等原子 TiNbMoTaW 高熵合金的激光能量加工性

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-09-26 DOI:10.1016/j.mtla.2024.102241
Yong Seong Kim , Ozkan Gokcekaya , Aira Matsugaki , Ryosuke Ozasa , Takayoshi Nakano
{"title":"通过激光粉末床熔融对元素原料粉末进行原位合金化,实现非等原子 TiNbMoTaW 高熵合金的激光能量加工性","authors":"Yong Seong Kim ,&nbsp;Ozkan Gokcekaya ,&nbsp;Aira Matsugaki ,&nbsp;Ryosuke Ozasa ,&nbsp;Takayoshi Nakano","doi":"10.1016/j.mtla.2024.102241","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-alloyed powder, which is primarily used in laser powder bed fusion (LPBF), has the disadvantages of requiring time and high manufacturing costs. To overcome these limitations, in-situ alloying, which mixes pure elemental powders and alloys them in real-time during the LPBF process, has attracted attention. In particular, manufacturing high entropy alloys (HEA) containing high-melting-point refractory elements through in-situ alloying presents considerable challenges. In this study, a non-equiatomic single body-centered cubic (BCC) solid-solution HEA was fabricated via in-situ alloying with Ti, Nb, Mo, Ta, and W powders through the LPBF process. Specifically, by applying a high volumetric energy density (VED), we successfully mitigated the segregation of constituent elements, leading to an enhanced crystallographic texture. Consequently, the reduction in the residual stress and high-angle grain boundary (HAGB) density progressed, contributing to an increased relative density. Thus, this study marks a pioneering endeavor for in-situ alloyed HEA fabrication via LPBF, illustrating the efficacy of in-situ alloying utilizing mixed powders.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102241"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser energy-dependent processability of non-equiatomic TiNbMoTaW high-entropy alloy through in-situ alloying of elemental feedstock powders by laser powder bed fusion\",\"authors\":\"Yong Seong Kim ,&nbsp;Ozkan Gokcekaya ,&nbsp;Aira Matsugaki ,&nbsp;Ryosuke Ozasa ,&nbsp;Takayoshi Nakano\",\"doi\":\"10.1016/j.mtla.2024.102241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pre-alloyed powder, which is primarily used in laser powder bed fusion (LPBF), has the disadvantages of requiring time and high manufacturing costs. To overcome these limitations, in-situ alloying, which mixes pure elemental powders and alloys them in real-time during the LPBF process, has attracted attention. In particular, manufacturing high entropy alloys (HEA) containing high-melting-point refractory elements through in-situ alloying presents considerable challenges. In this study, a non-equiatomic single body-centered cubic (BCC) solid-solution HEA was fabricated via in-situ alloying with Ti, Nb, Mo, Ta, and W powders through the LPBF process. Specifically, by applying a high volumetric energy density (VED), we successfully mitigated the segregation of constituent elements, leading to an enhanced crystallographic texture. Consequently, the reduction in the residual stress and high-angle grain boundary (HAGB) density progressed, contributing to an increased relative density. Thus, this study marks a pioneering endeavor for in-situ alloyed HEA fabrication via LPBF, illustrating the efficacy of in-situ alloying utilizing mixed powders.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102241\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

预合金化粉末主要用于激光粉末床熔化(LPBF),其缺点是耗时长、制造成本高。为了克服这些限制,在 LPBF 过程中混合纯元素粉末并对其进行实时合金化的原位合金化技术备受关注。特别是,通过原位合金化制造含有高熔点难熔元素的高熵合金(HEA)面临着相当大的挑战。在本研究中,通过 LPBF 工艺与 Ti、Nb、Mo、Ta 和 W 粉末进行原位合金化,制造出了非等原子单体中心立方(BCC)固溶高熵合金。具体来说,通过应用高体积能量密度 (VED),我们成功地减轻了组成元素的偏析,从而增强了晶体学纹理。因此,残余应力和高角度晶界(HAGB)密度的降低也取得了进展,从而提高了相对密度。因此,这项研究开创了通过 LPBF 原位合金化制造 HEA 的先河,说明了利用混合粉末进行原位合金化的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser energy-dependent processability of non-equiatomic TiNbMoTaW high-entropy alloy through in-situ alloying of elemental feedstock powders by laser powder bed fusion
Pre-alloyed powder, which is primarily used in laser powder bed fusion (LPBF), has the disadvantages of requiring time and high manufacturing costs. To overcome these limitations, in-situ alloying, which mixes pure elemental powders and alloys them in real-time during the LPBF process, has attracted attention. In particular, manufacturing high entropy alloys (HEA) containing high-melting-point refractory elements through in-situ alloying presents considerable challenges. In this study, a non-equiatomic single body-centered cubic (BCC) solid-solution HEA was fabricated via in-situ alloying with Ti, Nb, Mo, Ta, and W powders through the LPBF process. Specifically, by applying a high volumetric energy density (VED), we successfully mitigated the segregation of constituent elements, leading to an enhanced crystallographic texture. Consequently, the reduction in the residual stress and high-angle grain boundary (HAGB) density progressed, contributing to an increased relative density. Thus, this study marks a pioneering endeavor for in-situ alloyed HEA fabrication via LPBF, illustrating the efficacy of in-situ alloying utilizing mixed powders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
Mechano-chemical competition in driven complex concentrated alloys Nucleation of recrystallization: A new approach to consider the evolution of the substructure in the system Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field Effect of thermal history on performance of bulk metallic glass spacecraft components Multi-phase-field lattice Boltzmann modeling and simulations of semi-solid simple shear deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1