通过皮秒脉冲激光诱导可溶性聚酰亚胺悬浮液的转化直接写入石墨烯/石墨泡沫

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-09-18 DOI:10.1016/j.cartre.2024.100399
Ho-Won Noh , Anirudha Karati , Ikenna C. Nlebedim , Pranav Shrotriya
{"title":"通过皮秒脉冲激光诱导可溶性聚酰亚胺悬浮液的转化直接写入石墨烯/石墨泡沫","authors":"Ho-Won Noh ,&nbsp;Anirudha Karati ,&nbsp;Ikenna C. Nlebedim ,&nbsp;Pranav Shrotriya","doi":"10.1016/j.cartre.2024.100399","DOIUrl":null,"url":null,"abstract":"<div><div>We report the direct writing of graphene/graphitic foam with high electrical conductivity using laser-induced-transformation of polyimide (PI) resin films on glass surfaces. Raman spectroscopy of the treated surfaces indicated that average laser power irradiation between 900 and 1500 kW/cm<sup>2</sup> transformed the PI film into a few layered graphene-dominated film, and the increase in irradiation power above 1500 kW/cm<sup>2</sup> led to the formation of graphitic (multilayered graphene) material. The electrical conductivity of the transformed film was between 5800±750 S m<sup>-1</sup> (lower power irradiation) and 1250±300 S m<sup>-1</sup> (higher laser power irradiation). SEM imaging showed that the transformed material has a closed cell foam morphology enclosed between the smooth top and bottom layers. The results indicate that heat treatment of the polyimide suspension films, and subsequent ultra-short, pulsed laser irradiation resulted in a closed-cell graphene/graphitic foam with high electrical conductivity. The pore aspect ratio, density, and film conductivity are used to estimate the conductivity of the solid phases in the laser-treated films at different powers. Laser-induced transformation of the PI suspension into graphene/graphitic foam is conducive to additive manufacturing and may enable the direct printing of graphitic foam-based three-dimensional components.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100399"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Writing of graphene/graphitic foam through picosecond pulsed laser-induced transformation of soluble polyimide suspension\",\"authors\":\"Ho-Won Noh ,&nbsp;Anirudha Karati ,&nbsp;Ikenna C. Nlebedim ,&nbsp;Pranav Shrotriya\",\"doi\":\"10.1016/j.cartre.2024.100399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report the direct writing of graphene/graphitic foam with high electrical conductivity using laser-induced-transformation of polyimide (PI) resin films on glass surfaces. Raman spectroscopy of the treated surfaces indicated that average laser power irradiation between 900 and 1500 kW/cm<sup>2</sup> transformed the PI film into a few layered graphene-dominated film, and the increase in irradiation power above 1500 kW/cm<sup>2</sup> led to the formation of graphitic (multilayered graphene) material. The electrical conductivity of the transformed film was between 5800±750 S m<sup>-1</sup> (lower power irradiation) and 1250±300 S m<sup>-1</sup> (higher laser power irradiation). SEM imaging showed that the transformed material has a closed cell foam morphology enclosed between the smooth top and bottom layers. The results indicate that heat treatment of the polyimide suspension films, and subsequent ultra-short, pulsed laser irradiation resulted in a closed-cell graphene/graphitic foam with high electrical conductivity. The pore aspect ratio, density, and film conductivity are used to estimate the conductivity of the solid phases in the laser-treated films at different powers. Laser-induced transformation of the PI suspension into graphene/graphitic foam is conducive to additive manufacturing and may enable the direct printing of graphitic foam-based three-dimensional components.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100399\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了利用激光诱导聚酰亚胺(PI)树脂薄膜在玻璃表面的转化,直接写入具有高导电性的石墨烯/石墨泡沫。对处理过的表面进行的拉曼光谱分析表明,900 至 1500 kW/cm2 的平均激光辐照功率可将聚酰亚胺薄膜转化为以石墨烯为主的几层薄膜,而辐照功率超过 1500 kW/cm2 时,辐照功率的增加会导致石墨化(多层石墨烯)材料的形成。转化薄膜的电导率介于 5800±750 S m-1 (低功率辐照)和 1250±300 S m-1 (高激光功率辐照)之间。扫描电子显微镜成像显示,转化后的材料在光滑的顶层和底层之间形成了闭孔泡沫形态。结果表明,对聚酰亚胺悬浮膜进行热处理,然后用超短脉冲激光照射,可形成具有高导电性的闭孔石墨烯/石墨泡沫。孔隙率、密度和薄膜电导率可用于估算不同功率下激光处理薄膜中固相的电导率。激光诱导将 PI 悬浮液转化为石墨烯/石墨泡沫有利于增材制造,可直接打印基于石墨泡沫的三维部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Writing of graphene/graphitic foam through picosecond pulsed laser-induced transformation of soluble polyimide suspension
We report the direct writing of graphene/graphitic foam with high electrical conductivity using laser-induced-transformation of polyimide (PI) resin films on glass surfaces. Raman spectroscopy of the treated surfaces indicated that average laser power irradiation between 900 and 1500 kW/cm2 transformed the PI film into a few layered graphene-dominated film, and the increase in irradiation power above 1500 kW/cm2 led to the formation of graphitic (multilayered graphene) material. The electrical conductivity of the transformed film was between 5800±750 S m-1 (lower power irradiation) and 1250±300 S m-1 (higher laser power irradiation). SEM imaging showed that the transformed material has a closed cell foam morphology enclosed between the smooth top and bottom layers. The results indicate that heat treatment of the polyimide suspension films, and subsequent ultra-short, pulsed laser irradiation resulted in a closed-cell graphene/graphitic foam with high electrical conductivity. The pore aspect ratio, density, and film conductivity are used to estimate the conductivity of the solid phases in the laser-treated films at different powers. Laser-induced transformation of the PI suspension into graphene/graphitic foam is conducive to additive manufacturing and may enable the direct printing of graphitic foam-based three-dimensional components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Mechanistic insight into the catalytic activities of metallic sites on nitrogen-doped graphene quantum dots for CO2 hydrogenation Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1