{"title":"使用可编程动态偏心旋转电极的微型电化学铣削研究","authors":"Zhichao Li, Weiyu Zhou, Guixian Liu, Hongping Luo, Yongjun Zhang","doi":"10.1016/j.precisioneng.2024.09.024","DOIUrl":null,"url":null,"abstract":"<div><div>Micro electrochemical machining (ECM) has the advantages of non-contact machining, no tool loss and no residual stress, and has great development potential in the field of microstructure manufacturing. However, the micron-scale machining gap is difficult to renew and discharge the electrolyte and electrolytic products in time. In this paper, a novel micro ECM with programmable dynamic eccentric rotating electrode (DER-ECM) is proposed, which can effectively improve the discharge of electrolytic products in the machining area. According to the process characteristics, a disc flexure hinge structure with one-stage amplification was designed, which was driven by a piezo-ceramic actuator, and the programmable eccentricity ranging from 0 to 20 μm. The multi-physics model of flow field and electric field of DER-ECM, micro ECM with eccentric rotating electrode (ER-ECM) and micro ECM with rotating electrode (R-ECM) were established. The theoretical simulation results showed that the flow rate generated by DER-ECM at the bottom of the electrode is 97 times that of ER-ECM. The current density generated by DER-ECM showed periodic pulsation, and the pulsation period was determined by the driving frequency of the piezo-ceramic actuator. The experimental results showed that DER-ECM could effectively eliminate the surface spike of the workpiece in the bottom machining area and effectively improve the machining accuracy. The micro-groove widths obtained under DER-ECM, ER-ECM and R-ECM were 418 μm, 446 μm and 468 μm, respectively. In addition, the influence of three types of dynamic eccentric rotation electrode trajectories on DER-ECM was studied. The experimental results showed that the sawtooth dynamic eccentric rotation electrode had better machining accuracy. Theoretical simulation and experimental results showed that DER-ECM could improve the flow field and achieve higher machining efficiency and machining localization.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 300-320"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on micro electrochemical milling with programmable dynamic eccentric rotating electrode\",\"authors\":\"Zhichao Li, Weiyu Zhou, Guixian Liu, Hongping Luo, Yongjun Zhang\",\"doi\":\"10.1016/j.precisioneng.2024.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Micro electrochemical machining (ECM) has the advantages of non-contact machining, no tool loss and no residual stress, and has great development potential in the field of microstructure manufacturing. However, the micron-scale machining gap is difficult to renew and discharge the electrolyte and electrolytic products in time. In this paper, a novel micro ECM with programmable dynamic eccentric rotating electrode (DER-ECM) is proposed, which can effectively improve the discharge of electrolytic products in the machining area. According to the process characteristics, a disc flexure hinge structure with one-stage amplification was designed, which was driven by a piezo-ceramic actuator, and the programmable eccentricity ranging from 0 to 20 μm. The multi-physics model of flow field and electric field of DER-ECM, micro ECM with eccentric rotating electrode (ER-ECM) and micro ECM with rotating electrode (R-ECM) were established. The theoretical simulation results showed that the flow rate generated by DER-ECM at the bottom of the electrode is 97 times that of ER-ECM. The current density generated by DER-ECM showed periodic pulsation, and the pulsation period was determined by the driving frequency of the piezo-ceramic actuator. The experimental results showed that DER-ECM could effectively eliminate the surface spike of the workpiece in the bottom machining area and effectively improve the machining accuracy. The micro-groove widths obtained under DER-ECM, ER-ECM and R-ECM were 418 μm, 446 μm and 468 μm, respectively. In addition, the influence of three types of dynamic eccentric rotation electrode trajectories on DER-ECM was studied. The experimental results showed that the sawtooth dynamic eccentric rotation electrode had better machining accuracy. Theoretical simulation and experimental results showed that DER-ECM could improve the flow field and achieve higher machining efficiency and machining localization.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 300-320\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002241\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002241","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Study on micro electrochemical milling with programmable dynamic eccentric rotating electrode
Micro electrochemical machining (ECM) has the advantages of non-contact machining, no tool loss and no residual stress, and has great development potential in the field of microstructure manufacturing. However, the micron-scale machining gap is difficult to renew and discharge the electrolyte and electrolytic products in time. In this paper, a novel micro ECM with programmable dynamic eccentric rotating electrode (DER-ECM) is proposed, which can effectively improve the discharge of electrolytic products in the machining area. According to the process characteristics, a disc flexure hinge structure with one-stage amplification was designed, which was driven by a piezo-ceramic actuator, and the programmable eccentricity ranging from 0 to 20 μm. The multi-physics model of flow field and electric field of DER-ECM, micro ECM with eccentric rotating electrode (ER-ECM) and micro ECM with rotating electrode (R-ECM) were established. The theoretical simulation results showed that the flow rate generated by DER-ECM at the bottom of the electrode is 97 times that of ER-ECM. The current density generated by DER-ECM showed periodic pulsation, and the pulsation period was determined by the driving frequency of the piezo-ceramic actuator. The experimental results showed that DER-ECM could effectively eliminate the surface spike of the workpiece in the bottom machining area and effectively improve the machining accuracy. The micro-groove widths obtained under DER-ECM, ER-ECM and R-ECM were 418 μm, 446 μm and 468 μm, respectively. In addition, the influence of three types of dynamic eccentric rotation electrode trajectories on DER-ECM was studied. The experimental results showed that the sawtooth dynamic eccentric rotation electrode had better machining accuracy. Theoretical simulation and experimental results showed that DER-ECM could improve the flow field and achieve higher machining efficiency and machining localization.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.