Liu He , Yu Tan , Timothy Copeland , Jiannan Chen , Qiang Tang
{"title":"基于机器学习的岩石节理剪切行为预测方法","authors":"Liu He , Yu Tan , Timothy Copeland , Jiannan Chen , Qiang Tang","doi":"10.1016/j.sandf.2024.101517","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, machine learning prediction models (MLPMs), including artificial neural network (ANN), support vector regression (SVR), K-nearest neighbors (KNN), and random forest (RF) algorithms, were developed to predict the peak shear stress values and shear stress-displacement curves of rock joints. The database used contained 693 records of peak shear stress and 162 original shear stress-displacement curves derived from direct shear tests. The results demonstrated that the MLPMs provided reliable predictions for shear stress, with the mean squared errors (MSEs) between their predicted and measured shear stress varying from 0.003 to 0.069 and the coefficients of determination (R<sup>2</sup> values) varying from 0.964 to 0.998. The feature importance values indicate that the joint surface roughness coefficient (JRC) is the most important influential factor in determining the peak shear stress, followed by the joint wall compressive strength (JCS), basic friction angle (<span><math><msub><mi>φ</mi><mi>b</mi></msub></math></span>), and shear surface area (<em>A</em><sub>s</sub>). Similarly, for the shear stress-displacement curve, the JRC is the dominant factor, followed by <em>A</em><sub>s</sub>, <span><math><msub><mi>φ</mi><mi>b</mi></msub></math></span>, and JCS. Additional direct shear tests were conducted for model validation. The validation shows that the MLPM predictions demonstrate improved consistency with the experimental results in relation to both the peak shear stress and peak shear displacement.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 6","pages":"Article 101517"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning-based method for predicting the shear behaviors of rock joints\",\"authors\":\"Liu He , Yu Tan , Timothy Copeland , Jiannan Chen , Qiang Tang\",\"doi\":\"10.1016/j.sandf.2024.101517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, machine learning prediction models (MLPMs), including artificial neural network (ANN), support vector regression (SVR), K-nearest neighbors (KNN), and random forest (RF) algorithms, were developed to predict the peak shear stress values and shear stress-displacement curves of rock joints. The database used contained 693 records of peak shear stress and 162 original shear stress-displacement curves derived from direct shear tests. The results demonstrated that the MLPMs provided reliable predictions for shear stress, with the mean squared errors (MSEs) between their predicted and measured shear stress varying from 0.003 to 0.069 and the coefficients of determination (R<sup>2</sup> values) varying from 0.964 to 0.998. The feature importance values indicate that the joint surface roughness coefficient (JRC) is the most important influential factor in determining the peak shear stress, followed by the joint wall compressive strength (JCS), basic friction angle (<span><math><msub><mi>φ</mi><mi>b</mi></msub></math></span>), and shear surface area (<em>A</em><sub>s</sub>). Similarly, for the shear stress-displacement curve, the JRC is the dominant factor, followed by <em>A</em><sub>s</sub>, <span><math><msub><mi>φ</mi><mi>b</mi></msub></math></span>, and JCS. Additional direct shear tests were conducted for model validation. The validation shows that the MLPM predictions demonstrate improved consistency with the experimental results in relation to both the peak shear stress and peak shear displacement.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"64 6\",\"pages\":\"Article 101517\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080624000957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A machine learning-based method for predicting the shear behaviors of rock joints
In this study, machine learning prediction models (MLPMs), including artificial neural network (ANN), support vector regression (SVR), K-nearest neighbors (KNN), and random forest (RF) algorithms, were developed to predict the peak shear stress values and shear stress-displacement curves of rock joints. The database used contained 693 records of peak shear stress and 162 original shear stress-displacement curves derived from direct shear tests. The results demonstrated that the MLPMs provided reliable predictions for shear stress, with the mean squared errors (MSEs) between their predicted and measured shear stress varying from 0.003 to 0.069 and the coefficients of determination (R2 values) varying from 0.964 to 0.998. The feature importance values indicate that the joint surface roughness coefficient (JRC) is the most important influential factor in determining the peak shear stress, followed by the joint wall compressive strength (JCS), basic friction angle (), and shear surface area (As). Similarly, for the shear stress-displacement curve, the JRC is the dominant factor, followed by As, , and JCS. Additional direct shear tests were conducted for model validation. The validation shows that the MLPM predictions demonstrate improved consistency with the experimental results in relation to both the peak shear stress and peak shear displacement.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.