Lucas Rousseau , Djafar Iabbaden , Xxx Sedao , Nathalie Peillon , Szilvia Kalácska , Eleanor Lawrence Bright , Guillaume Kermouche , Jean-Philippe Colombier , András Borbély
{"title":"用超快红外激光照射铝的表层下硬化","authors":"Lucas Rousseau , Djafar Iabbaden , Xxx Sedao , Nathalie Peillon , Szilvia Kalácska , Eleanor Lawrence Bright , Guillaume Kermouche , Jean-Philippe Colombier , András Borbély","doi":"10.1016/j.scriptamat.2024.116404","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of femtosecond laser shock peening on a model Al-0.3Mn alloy was investigated experimentally and numerically by molecular dynamics. Micro-diffraction experiments performed at synchrotron source revealed the depth profiles of the residual stress and the stored energy of dislocations, a measure of local plasticity. The depth of the maximum compressive stress did not coincide with that of the maximum dislocation energy, which was found at the surface. The interaction between the laser and the metal was simulated with LAMMPS using a two-temperature molecular dynamics package. The model accurately described the equation of state of aluminum and showed nearly equal resolved shear stresses on all slip systems at the wavefront. The dislocation density at a depth of 1 μm, predicted by the Meyers' model <span><span>[1]</span></span>, was higher than the experimental data, suggesting possible recovery due to the increased temperature of the sample after repeated shock loading.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116404"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsurface hardening of Al irradiated with ultrafast infrared laser\",\"authors\":\"Lucas Rousseau , Djafar Iabbaden , Xxx Sedao , Nathalie Peillon , Szilvia Kalácska , Eleanor Lawrence Bright , Guillaume Kermouche , Jean-Philippe Colombier , András Borbély\",\"doi\":\"10.1016/j.scriptamat.2024.116404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of femtosecond laser shock peening on a model Al-0.3Mn alloy was investigated experimentally and numerically by molecular dynamics. Micro-diffraction experiments performed at synchrotron source revealed the depth profiles of the residual stress and the stored energy of dislocations, a measure of local plasticity. The depth of the maximum compressive stress did not coincide with that of the maximum dislocation energy, which was found at the surface. The interaction between the laser and the metal was simulated with LAMMPS using a two-temperature molecular dynamics package. The model accurately described the equation of state of aluminum and showed nearly equal resolved shear stresses on all slip systems at the wavefront. The dislocation density at a depth of 1 μm, predicted by the Meyers' model <span><span>[1]</span></span>, was higher than the experimental data, suggesting possible recovery due to the increased temperature of the sample after repeated shock loading.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116404\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004391\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004391","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Subsurface hardening of Al irradiated with ultrafast infrared laser
The effect of femtosecond laser shock peening on a model Al-0.3Mn alloy was investigated experimentally and numerically by molecular dynamics. Micro-diffraction experiments performed at synchrotron source revealed the depth profiles of the residual stress and the stored energy of dislocations, a measure of local plasticity. The depth of the maximum compressive stress did not coincide with that of the maximum dislocation energy, which was found at the surface. The interaction between the laser and the metal was simulated with LAMMPS using a two-temperature molecular dynamics package. The model accurately described the equation of state of aluminum and showed nearly equal resolved shear stresses on all slip systems at the wavefront. The dislocation density at a depth of 1 μm, predicted by the Meyers' model [1], was higher than the experimental data, suggesting possible recovery due to the increased temperature of the sample after repeated shock loading.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.