2:17 型钐钴磁体中钆和镝的增强补偿效应

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-10-13 DOI:10.1016/j.scriptamat.2024.116406
{"title":"2:17 型钐钴磁体中钆和镝的增强补偿效应","authors":"","doi":"10.1016/j.scriptamat.2024.116406","DOIUrl":null,"url":null,"abstract":"<div><div>The maximum magnetic energy product ((<em>BH</em>)<sub>max</sub>) of 2:17-type SmCo magnets with low temperature coefficient (<em>α</em>), prepared by partially substituting Sm with heavy rare-earth elements (HREs), are lower than that of conventional magnets. Optimizing their magnetic properties by harnessing complementary advantages of different HREs is an effective approach that warrants further study. This study unveils an enhanced compensation effect of co-doping Gd and Dy elements in SmCo magnets, which becomes significant as the total content of Gd and Dy increases. Specifically, when the co-doping level of Gd and Dy reaches 10.3 wt%, there is a significant improvement of 71 % in (<em>BH</em>)<sub>max</sub> compared to doping with 10.3 wt% Dy alone, while maintaining a comparable <em>α</em> value. Microstructure and microchemistry analysis, along with first principles calculations reveal that this effect is closely associated with the enrichment of Dy in cell 2:17R phases. This finding holds significance for designing temperature-stable SmCo magnets.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced compensation effect of Gd and Dy in 2:17-type SmCo magnets\",\"authors\":\"\",\"doi\":\"10.1016/j.scriptamat.2024.116406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The maximum magnetic energy product ((<em>BH</em>)<sub>max</sub>) of 2:17-type SmCo magnets with low temperature coefficient (<em>α</em>), prepared by partially substituting Sm with heavy rare-earth elements (HREs), are lower than that of conventional magnets. Optimizing their magnetic properties by harnessing complementary advantages of different HREs is an effective approach that warrants further study. This study unveils an enhanced compensation effect of co-doping Gd and Dy elements in SmCo magnets, which becomes significant as the total content of Gd and Dy increases. Specifically, when the co-doping level of Gd and Dy reaches 10.3 wt%, there is a significant improvement of 71 % in (<em>BH</em>)<sub>max</sub> compared to doping with 10.3 wt% Dy alone, while maintaining a comparable <em>α</em> value. Microstructure and microchemistry analysis, along with first principles calculations reveal that this effect is closely associated with the enrichment of Dy in cell 2:17R phases. This finding holds significance for designing temperature-stable SmCo magnets.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135964622400441X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964622400441X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过用重稀土元素(HREs)部分替代 Sm 制备的具有低温度系数(α)的 2:17 型 SmCo 磁体的最大磁能积((BH)max)低于传统磁体。通过利用不同 HRE 的互补优势来优化其磁性能是一种有效的方法,值得进一步研究。本研究揭示了在钐钴磁体中共同掺杂钆和镝元素的增强补偿效应,这种效应随着钆和镝总含量的增加而变得显著。具体来说,当 Gd 和 Dy 的共掺杂水平达到 10.3 wt% 时,与单独掺杂 10.3 wt% 的 Dy 相比,(BH)最大值显著提高了 71%,同时保持了相当的 α 值。微观结构和微观化学分析以及第一性原理计算显示,这种效果与电池 2:17R 相中镝的富集密切相关。这一发现对设计温度稳定的 SmCo 磁体具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced compensation effect of Gd and Dy in 2:17-type SmCo magnets
The maximum magnetic energy product ((BH)max) of 2:17-type SmCo magnets with low temperature coefficient (α), prepared by partially substituting Sm with heavy rare-earth elements (HREs), are lower than that of conventional magnets. Optimizing their magnetic properties by harnessing complementary advantages of different HREs is an effective approach that warrants further study. This study unveils an enhanced compensation effect of co-doping Gd and Dy elements in SmCo magnets, which becomes significant as the total content of Gd and Dy increases. Specifically, when the co-doping level of Gd and Dy reaches 10.3 wt%, there is a significant improvement of 71 % in (BH)max compared to doping with 10.3 wt% Dy alone, while maintaining a comparable α value. Microstructure and microchemistry analysis, along with first principles calculations reveal that this effect is closely associated with the enrichment of Dy in cell 2:17R phases. This finding holds significance for designing temperature-stable SmCo magnets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
In-situ transmission electron microscopy investigation of the deformation mechanism in CoCrNi and CoCrNiSi0.3 nanopillars FIP-GNN: Graph neural networks for scalable prediction of grain-level fatigue indicator parameters Refractory multi-principal element alloys with solution and aged HfRu-B2 precipitates Enhanced compensation effect of Gd and Dy in 2:17-type SmCo magnets Effects of high gravity on the nucleation and precipitation of δ phase of GH4169 alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1