Tian-Shu Liu , Feng Qiu , Siwei Du , Jinlong Su , Hong-Yu Yang , Peng Chen , Fern Lan Ng , Youxiang Chew , Qi-Chuan Jiang , Chaolin Tan
{"title":"在 7075 铝合金的增材制造过程中定制孔隙率,以实现裂纹抑制和高强度","authors":"Tian-Shu Liu , Feng Qiu , Siwei Du , Jinlong Su , Hong-Yu Yang , Peng Chen , Fern Lan Ng , Youxiang Chew , Qi-Chuan Jiang , Chaolin Tan","doi":"10.1016/j.jmatprotec.2024.118620","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-directed energy deposition (LDED) additive manufacturing of 7075 aluminum (Al) alloy is highly challenging due to the inherent poor printability and high cracking tendency. Here, we disclose a new approach to suppress cracking in LDED-processed 7075 Al alloy by engineered porosity (about 1.14 %). The crack-free 7075 Al alloy was achieved by slightly sacrificing the densification. Further increasing the density of the material by increasing laser energy input leads to cracking. The mechanisms of minor pores in alleviating cracks are mainly reflected in three aspects: (i) pores disrupt the epitaxial growth of columnar grains; (ii) free-form surfaces surrounding pores could release the accumulated residual stress, and (iii) more dislocations near pore drive nucleation of near equiaxed grains. The LDED-processed crack-free 7075 Al alloy after heat treatment shows an ultimate tensile strength of 464 ± 12 MPa and break elongation of 9.7 ± 1.2 %, attaining a good strength-ductility synergy among many additively manufactured 7075 Al alloys in the current literature. Unlike the mainstream additive manufacturing of metallic materials, which pursues high densification to attain high-performance components, this work demonstrates the positive roles of pores in the additive manufacturing of cracking-sensitive materials. The findings of this work highlight new insights regarding the balance between pores and cracks for better manufacturability and higher mechanical performance of materials.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118620"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored porosity in additive manufacturing of 7075 aluminum alloy for crack suppression and high strength\",\"authors\":\"Tian-Shu Liu , Feng Qiu , Siwei Du , Jinlong Su , Hong-Yu Yang , Peng Chen , Fern Lan Ng , Youxiang Chew , Qi-Chuan Jiang , Chaolin Tan\",\"doi\":\"10.1016/j.jmatprotec.2024.118620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser-directed energy deposition (LDED) additive manufacturing of 7075 aluminum (Al) alloy is highly challenging due to the inherent poor printability and high cracking tendency. Here, we disclose a new approach to suppress cracking in LDED-processed 7075 Al alloy by engineered porosity (about 1.14 %). The crack-free 7075 Al alloy was achieved by slightly sacrificing the densification. Further increasing the density of the material by increasing laser energy input leads to cracking. The mechanisms of minor pores in alleviating cracks are mainly reflected in three aspects: (i) pores disrupt the epitaxial growth of columnar grains; (ii) free-form surfaces surrounding pores could release the accumulated residual stress, and (iii) more dislocations near pore drive nucleation of near equiaxed grains. The LDED-processed crack-free 7075 Al alloy after heat treatment shows an ultimate tensile strength of 464 ± 12 MPa and break elongation of 9.7 ± 1.2 %, attaining a good strength-ductility synergy among many additively manufactured 7075 Al alloys in the current literature. Unlike the mainstream additive manufacturing of metallic materials, which pursues high densification to attain high-performance components, this work demonstrates the positive roles of pores in the additive manufacturing of cracking-sensitive materials. The findings of this work highlight new insights regarding the balance between pores and cracks for better manufacturability and higher mechanical performance of materials.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"334 \",\"pages\":\"Article 118620\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624003388\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Tailored porosity in additive manufacturing of 7075 aluminum alloy for crack suppression and high strength
Laser-directed energy deposition (LDED) additive manufacturing of 7075 aluminum (Al) alloy is highly challenging due to the inherent poor printability and high cracking tendency. Here, we disclose a new approach to suppress cracking in LDED-processed 7075 Al alloy by engineered porosity (about 1.14 %). The crack-free 7075 Al alloy was achieved by slightly sacrificing the densification. Further increasing the density of the material by increasing laser energy input leads to cracking. The mechanisms of minor pores in alleviating cracks are mainly reflected in three aspects: (i) pores disrupt the epitaxial growth of columnar grains; (ii) free-form surfaces surrounding pores could release the accumulated residual stress, and (iii) more dislocations near pore drive nucleation of near equiaxed grains. The LDED-processed crack-free 7075 Al alloy after heat treatment shows an ultimate tensile strength of 464 ± 12 MPa and break elongation of 9.7 ± 1.2 %, attaining a good strength-ductility synergy among many additively manufactured 7075 Al alloys in the current literature. Unlike the mainstream additive manufacturing of metallic materials, which pursues high densification to attain high-performance components, this work demonstrates the positive roles of pores in the additive manufacturing of cracking-sensitive materials. The findings of this work highlight new insights regarding the balance between pores and cracks for better manufacturability and higher mechanical performance of materials.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.