使用自然语言处理的基于图形的智能事故隐患本体,用于跟踪、预测和学习

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-10-10 DOI:10.1016/j.autcon.2024.105800
Eunbin Hong , SeungYeon Lee , Hayoung Kim , JeongEun Park , Myoung Bae Seo , June-Seong Yi
{"title":"使用自然语言处理的基于图形的智能事故隐患本体,用于跟踪、预测和学习","authors":"Eunbin Hong ,&nbsp;SeungYeon Lee ,&nbsp;Hayoung Kim ,&nbsp;JeongEun Park ,&nbsp;Myoung Bae Seo ,&nbsp;June-Seong Yi","doi":"10.1016/j.autcon.2024.105800","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenge of dispersed accident-related information on construction sites, which hinders consensus among employers, workers, supervisors, and society. A robust NLP-based framework is presented to analyze and structure accident-related textual data into a comprehensive knowledge base that reveals accident patterns and risk information. Accident scenarios, including frequency and severity scores, are structured into a graph database through knowledge modeling, establishing an ontology to elucidate keyword relationships. Network analysis identifies accident patterns, quantifies scenario likelihood and severity, and predicts criticality, forming an accident hazard ontology. This vectorized ontology supports accident tracking, prediction, and learning with potential applications. The framework ensures reliable data integration, real-time hazard assessment, and proactive safety measures.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105800"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-based intelligent accident hazard ontology using natural language processing for tracking, prediction, and learning\",\"authors\":\"Eunbin Hong ,&nbsp;SeungYeon Lee ,&nbsp;Hayoung Kim ,&nbsp;JeongEun Park ,&nbsp;Myoung Bae Seo ,&nbsp;June-Seong Yi\",\"doi\":\"10.1016/j.autcon.2024.105800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the challenge of dispersed accident-related information on construction sites, which hinders consensus among employers, workers, supervisors, and society. A robust NLP-based framework is presented to analyze and structure accident-related textual data into a comprehensive knowledge base that reveals accident patterns and risk information. Accident scenarios, including frequency and severity scores, are structured into a graph database through knowledge modeling, establishing an ontology to elucidate keyword relationships. Network analysis identifies accident patterns, quantifies scenario likelihood and severity, and predicts criticality, forming an accident hazard ontology. This vectorized ontology supports accident tracking, prediction, and learning with potential applications. The framework ensures reliable data integration, real-time hazard assessment, and proactive safety measures.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105800\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005363\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建筑工地上与事故相关的信息非常分散,这阻碍了雇主、工人、监理和社会之间达成共识,本文针对这一难题提出了解决方案。本文提出了一个基于 NLP 的强大框架,用于分析与事故相关的文本数据并将其结构化,形成一个全面的知识库,揭示事故模式和风险信息。通过知识建模,将事故场景(包括频率和严重程度评分)结构化为图数据库,建立本体论以阐明关键字关系。网络分析可识别事故模式,量化情景可能性和严重性,并预测临界度,从而形成事故危害本体。这一矢量化本体支持事故跟踪、预测和学习,并具有潜在的应用价值。该框架可确保可靠的数据集成、实时危险评估和前瞻性安全措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-based intelligent accident hazard ontology using natural language processing for tracking, prediction, and learning
This paper addresses the challenge of dispersed accident-related information on construction sites, which hinders consensus among employers, workers, supervisors, and society. A robust NLP-based framework is presented to analyze and structure accident-related textual data into a comprehensive knowledge base that reveals accident patterns and risk information. Accident scenarios, including frequency and severity scores, are structured into a graph database through knowledge modeling, establishing an ontology to elucidate keyword relationships. Network analysis identifies accident patterns, quantifies scenario likelihood and severity, and predicts criticality, forming an accident hazard ontology. This vectorized ontology supports accident tracking, prediction, and learning with potential applications. The framework ensures reliable data integration, real-time hazard assessment, and proactive safety measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Impact of selective environmental sound attenuation on operator performance, stress, attention, and task engagement in teleoperated demolition Real-time safety and worker self-assessment: Sensor-based mobile system for critical unsafe behaviors Optimizing printing and rheological parameters for 3D printing with cementitious materials Construction safety inspection with contrastive language-image pre-training (CLIP) image captioning and attention Signs on glasses: LiDAR data voids, hotspot effect, and reflection artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1