S Sadhasivam , T Sadhasivam , K Selvakumar , TH Oh , G Annadurai , Nagaraj Murugan , Yoong Ahm Kim
{"title":"设计用于稳定高效光电化学水分离的 II 型四元双层异质结构 Cu-WO3-BiVO4-Bi2S3NiOOH 光阳极","authors":"S Sadhasivam , T Sadhasivam , K Selvakumar , TH Oh , G Annadurai , Nagaraj Murugan , Yoong Ahm Kim","doi":"10.1016/j.jtice.2024.105786","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bismuth vanadate (BiVO<sub>4</sub>) and nickel oxyhydroxide (NiOOH) are the prominent photo(electro)catalysts for water-splitting photoelectrodes. The strong visible light absorbers of the Bi<sub>2</sub>S<sub>3</sub> decorated type II photoanode of WO<sub>3</sub>/BiVO<sub>4</sub>/NiOOH efficiently improve the photo-excitons in the photoanodes.</div></div><div><h3>Methods</h3><div>In this work, type II semiconductors heterostructure photoanodes are fabricated as Cu:WO<sub>3</sub>/BiVO<sub>4</sub>/Bi<sub>2</sub>S<sub>3</sub>/NiOOH. The bottom layer of heavily Cu- doped n-type WO<sub>3</sub> nanoplatelets is grown on FTO to make nano-heterostructure Cu:WO<sub>3</sub>/BiVO<sub>4</sub> photoanodes. The Bi<sub>2</sub>S<sub>3</sub> semiconductor has been grown on the BiVO<sub>4</sub> by chemical bath deposition and NiOOH deposited using the photo-assisted electrodeposition method. The resulting periodically ordered BiVO<sub>4</sub>/WO<sub>3</sub> platelets distinctly outperform by the Bi<sub>2</sub>S<sub>3</sub> and NiOOH-decorated quaternary photoanodes.</div></div><div><h3>Significant findings</h3><div>As a result, the as-prepared photoanode shows a high photocurrent density of 6.85 mA cm<sup>−2</sup> at 0 V vs. Ag/AgCl under the irradiation of 100 mW/cm<sup>2</sup> AM 1.5 G simulated sunlight. With the higher photoactivity of Bi<sub>2</sub>S<sub>3</sub> and NiOOH cocatalysts, the photoanode substantially gains stability at higher saturation photocurrents. Overall, the photoanode resulted in a low charge transfer resistance (387.4 Ohm.cm<sup>2</sup>) and a higher built-in potential of 180 mV, with 2.67 % of ABPE and 2.1 % of STH efficiencies at 0.3 V vs. Ag/AgCl.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105786"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of type II quaternary double-decker heterostructure Cu-WO3-BiVO4-Bi2S3NiOOH photoanode for stable and efficient photoelectrochemical water splitting\",\"authors\":\"S Sadhasivam , T Sadhasivam , K Selvakumar , TH Oh , G Annadurai , Nagaraj Murugan , Yoong Ahm Kim\",\"doi\":\"10.1016/j.jtice.2024.105786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Bismuth vanadate (BiVO<sub>4</sub>) and nickel oxyhydroxide (NiOOH) are the prominent photo(electro)catalysts for water-splitting photoelectrodes. The strong visible light absorbers of the Bi<sub>2</sub>S<sub>3</sub> decorated type II photoanode of WO<sub>3</sub>/BiVO<sub>4</sub>/NiOOH efficiently improve the photo-excitons in the photoanodes.</div></div><div><h3>Methods</h3><div>In this work, type II semiconductors heterostructure photoanodes are fabricated as Cu:WO<sub>3</sub>/BiVO<sub>4</sub>/Bi<sub>2</sub>S<sub>3</sub>/NiOOH. The bottom layer of heavily Cu- doped n-type WO<sub>3</sub> nanoplatelets is grown on FTO to make nano-heterostructure Cu:WO<sub>3</sub>/BiVO<sub>4</sub> photoanodes. The Bi<sub>2</sub>S<sub>3</sub> semiconductor has been grown on the BiVO<sub>4</sub> by chemical bath deposition and NiOOH deposited using the photo-assisted electrodeposition method. The resulting periodically ordered BiVO<sub>4</sub>/WO<sub>3</sub> platelets distinctly outperform by the Bi<sub>2</sub>S<sub>3</sub> and NiOOH-decorated quaternary photoanodes.</div></div><div><h3>Significant findings</h3><div>As a result, the as-prepared photoanode shows a high photocurrent density of 6.85 mA cm<sup>−2</sup> at 0 V vs. Ag/AgCl under the irradiation of 100 mW/cm<sup>2</sup> AM 1.5 G simulated sunlight. With the higher photoactivity of Bi<sub>2</sub>S<sub>3</sub> and NiOOH cocatalysts, the photoanode substantially gains stability at higher saturation photocurrents. Overall, the photoanode resulted in a low charge transfer resistance (387.4 Ohm.cm<sup>2</sup>) and a higher built-in potential of 180 mV, with 2.67 % of ABPE and 2.1 % of STH efficiencies at 0.3 V vs. Ag/AgCl.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105786\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004449\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
背景钒酸铋(BiVO4)和氢氧化镍(NiOOH)是水分离光电极的主要光(电)催化剂。在这项工作中,制备了 Cu:WO3/BiVO4/Bi2S3/NiOOH II 型半导体异质结构光阳极。在 FTO 上生长重度掺铜的 n 型 WO3 纳米片的底层,制成纳米异质结构 Cu:WO3/BiVO4 光阳极。Bi2S3 半导体通过化学沉积法生长在 BiVO4 上,NiOOH 则通过光辅助电沉积法沉积在 BiVO4 上。结果,在 100 mW/cm2 AM 1.5 G 模拟太阳光的照射下,制备的光阳极在 0 V 时与 Ag/AgCl 相比显示出 6.85 mA cm-2 的高光电流密度。由于 Bi2S3 和 NiOOH 催化剂的光活性较高,光阳极在较高饱和光电流下的稳定性大大提高。总体而言,这种光阳极具有较低的电荷转移电阻(387.4 欧姆.cm2)和较高的内置电位(180 mV),在 0.3 V 电压下与 Ag/AgCl 相比,ABPE 效率为 2.67%,STH 效率为 2.1%。
Design of type II quaternary double-decker heterostructure Cu-WO3-BiVO4-Bi2S3NiOOH photoanode for stable and efficient photoelectrochemical water splitting
Background
Bismuth vanadate (BiVO4) and nickel oxyhydroxide (NiOOH) are the prominent photo(electro)catalysts for water-splitting photoelectrodes. The strong visible light absorbers of the Bi2S3 decorated type II photoanode of WO3/BiVO4/NiOOH efficiently improve the photo-excitons in the photoanodes.
Methods
In this work, type II semiconductors heterostructure photoanodes are fabricated as Cu:WO3/BiVO4/Bi2S3/NiOOH. The bottom layer of heavily Cu- doped n-type WO3 nanoplatelets is grown on FTO to make nano-heterostructure Cu:WO3/BiVO4 photoanodes. The Bi2S3 semiconductor has been grown on the BiVO4 by chemical bath deposition and NiOOH deposited using the photo-assisted electrodeposition method. The resulting periodically ordered BiVO4/WO3 platelets distinctly outperform by the Bi2S3 and NiOOH-decorated quaternary photoanodes.
Significant findings
As a result, the as-prepared photoanode shows a high photocurrent density of 6.85 mA cm−2 at 0 V vs. Ag/AgCl under the irradiation of 100 mW/cm2 AM 1.5 G simulated sunlight. With the higher photoactivity of Bi2S3 and NiOOH cocatalysts, the photoanode substantially gains stability at higher saturation photocurrents. Overall, the photoanode resulted in a low charge transfer resistance (387.4 Ohm.cm2) and a higher built-in potential of 180 mV, with 2.67 % of ABPE and 2.1 % of STH efficiencies at 0.3 V vs. Ag/AgCl.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.