使用分子动力学方法评估分散在石蜡 PCM 中的铜纳米粒子的热物理性质

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-10-02 DOI:10.1016/j.jtice.2024.105785
Aliakbar Karimipour , Saeed A. Asiri , Khaled M. Alfawaz , Ageel F. Alogla , Nidal H. Abu-Hamdeh , PHH Viet
{"title":"使用分子动力学方法评估分散在石蜡 PCM 中的铜纳米粒子的热物理性质","authors":"Aliakbar Karimipour ,&nbsp;Saeed A. Asiri ,&nbsp;Khaled M. Alfawaz ,&nbsp;Ageel F. Alogla ,&nbsp;Nidal H. Abu-Hamdeh ,&nbsp;PHH Viet","doi":"10.1016/j.jtice.2024.105785","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>One of paraffin wax's most significant practical applications is for thermal energy storage (TES). Phase change materials (PCMs), such as paraffin wax, are being investigated to store thermal energy in various applications, from building heating and cooling systems to solar power plants. Adding copper nanoparticles (NPs) to the paraffin wax can enhance the mixture's performance. Another potential application of the paraffin wax-copper nanofluid model is in the development of advanced cooling systems.</div></div><div><h3>Methods</h3><div>The present research aims to evaluate the effects of different panel temperatures (Temps) on the thermal performance (TP) and electrical efficiency (EE) of paraffin wax-Cu nanofluid (NF) between parallel plates via the Molecular Dynamics (MD) method by using the LAMMPS simulation software.</div></div><div><h3>Significant Findings</h3><div>As the simulation progresses, the atomic structure undergoes significant changes in energy and TP. The potential energy (PE) decreases and stabilizes at -12,444.55 eV after 100,000 time steps, while the kinetic energy (KE) reaches a steady value of 763.51 eV. The nanoparticles (NP) in the middle of the wall exhibit the highest velocity, peaking at 0.002 Å/ps, and the maximum Temp is recorded at 334.08 K in the wall's center. Over time, the structure's TC stabilizes at 0.3199 W/m.K after 2 ns. However, increasing the wall Temp from 300 K to 400 K leads to an increase in nanoparticle velocity, from 0.02 Å/ps to 0.0283 Å/ps, and raises the maximum Temp from 334.08 K to 406.05. This temp rise also slightly improves the TC from 0.319 W/m.K to 0.325 W/m.K, but it causes a significant 84 % decrease in EE, highlighting the critical impact of Temp on the structure's behavior.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105785"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of molecular dynamics method to evaluate the thermo-physical properties of Cu nanoparticles dispersed in Paraffin wax PCM\",\"authors\":\"Aliakbar Karimipour ,&nbsp;Saeed A. Asiri ,&nbsp;Khaled M. Alfawaz ,&nbsp;Ageel F. Alogla ,&nbsp;Nidal H. Abu-Hamdeh ,&nbsp;PHH Viet\",\"doi\":\"10.1016/j.jtice.2024.105785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>One of paraffin wax's most significant practical applications is for thermal energy storage (TES). Phase change materials (PCMs), such as paraffin wax, are being investigated to store thermal energy in various applications, from building heating and cooling systems to solar power plants. Adding copper nanoparticles (NPs) to the paraffin wax can enhance the mixture's performance. Another potential application of the paraffin wax-copper nanofluid model is in the development of advanced cooling systems.</div></div><div><h3>Methods</h3><div>The present research aims to evaluate the effects of different panel temperatures (Temps) on the thermal performance (TP) and electrical efficiency (EE) of paraffin wax-Cu nanofluid (NF) between parallel plates via the Molecular Dynamics (MD) method by using the LAMMPS simulation software.</div></div><div><h3>Significant Findings</h3><div>As the simulation progresses, the atomic structure undergoes significant changes in energy and TP. The potential energy (PE) decreases and stabilizes at -12,444.55 eV after 100,000 time steps, while the kinetic energy (KE) reaches a steady value of 763.51 eV. The nanoparticles (NP) in the middle of the wall exhibit the highest velocity, peaking at 0.002 Å/ps, and the maximum Temp is recorded at 334.08 K in the wall's center. Over time, the structure's TC stabilizes at 0.3199 W/m.K after 2 ns. However, increasing the wall Temp from 300 K to 400 K leads to an increase in nanoparticle velocity, from 0.02 Å/ps to 0.0283 Å/ps, and raises the maximum Temp from 334.08 K to 406.05. This temp rise also slightly improves the TC from 0.319 W/m.K to 0.325 W/m.K, but it causes a significant 84 % decrease in EE, highlighting the critical impact of Temp on the structure's behavior.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105785\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004437\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004437","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景石蜡最重要的实际应用之一是热能储存(TES)。人们正在研究石蜡等相变材料(PCM)在各种应用中的热能存储,从建筑供暖和制冷系统到太阳能发电厂。在石蜡中添加纳米铜粒子(NPs)可以提高混合物的性能。本研究旨在利用 LAMMPS 仿真软件,通过分子动力学(MD)方法评估不同面板温度(Temps)对平行板间石蜡-铜纳米流体(NF)的热性能(TP)和电效率(EE)的影响。势能(PE)降低,并在 100,000 个时间步后稳定在-12,444.55 eV,而动能(KE)达到稳定值 763.51 eV。位于壁中间的纳米粒子(NP)表现出最高的速度,峰值为 0.002 Å/ps,壁中心的最大温度为 334.08 K。随着时间的推移,结构的 TC 在 2 ns 后稳定在 0.3199 W/m.K。然而,将壁温从 300 K 提高到 400 K 会导致纳米粒子速度从 0.02 Å/ps 提高到 0.0283 Å/ps,并将最大温度从 334.08 K 提高到 406.05。温度的升高也略微改善了热传导系数,从 0.319 W/m.K 提高到 0.325 W/m.K,但导致 EE 显著下降 84%,突出了温度对结构行为的关键影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The use of molecular dynamics method to evaluate the thermo-physical properties of Cu nanoparticles dispersed in Paraffin wax PCM

Background

One of paraffin wax's most significant practical applications is for thermal energy storage (TES). Phase change materials (PCMs), such as paraffin wax, are being investigated to store thermal energy in various applications, from building heating and cooling systems to solar power plants. Adding copper nanoparticles (NPs) to the paraffin wax can enhance the mixture's performance. Another potential application of the paraffin wax-copper nanofluid model is in the development of advanced cooling systems.

Methods

The present research aims to evaluate the effects of different panel temperatures (Temps) on the thermal performance (TP) and electrical efficiency (EE) of paraffin wax-Cu nanofluid (NF) between parallel plates via the Molecular Dynamics (MD) method by using the LAMMPS simulation software.

Significant Findings

As the simulation progresses, the atomic structure undergoes significant changes in energy and TP. The potential energy (PE) decreases and stabilizes at -12,444.55 eV after 100,000 time steps, while the kinetic energy (KE) reaches a steady value of 763.51 eV. The nanoparticles (NP) in the middle of the wall exhibit the highest velocity, peaking at 0.002 Å/ps, and the maximum Temp is recorded at 334.08 K in the wall's center. Over time, the structure's TC stabilizes at 0.3199 W/m.K after 2 ns. However, increasing the wall Temp from 300 K to 400 K leads to an increase in nanoparticle velocity, from 0.02 Å/ps to 0.0283 Å/ps, and raises the maximum Temp from 334.08 K to 406.05. This temp rise also slightly improves the TC from 0.319 W/m.K to 0.325 W/m.K, but it causes a significant 84 % decrease in EE, highlighting the critical impact of Temp on the structure's behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Cellulose nanocrystals/zeolitic imidazolate framework-L (CNCs/ZIF-L) composites for loading and diffusion-controlled release of doxorubicin hydrochloride Optimization and sensitivity analysis of magnetic fields on nanofluid flow on a wedge with machine learning techniques with joule heating, radiation and viscous dissipation Biochar from residues of anaerobic digestion and its application as electrocatalyst in Zn–air batteries Decoration of mesoporous hydroxyapatite nanorods by CdSe and PtO nanoparticles for enhanced photocatalytic oxidation of antibiotic pollutant in water Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1