通过猫眼干扰确定 CGH 空测中测试面的位置

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-10-02 DOI:10.1016/j.optlaseng.2024.108627
{"title":"通过猫眼干扰确定 CGH 空测中测试面的位置","authors":"","doi":"10.1016/j.optlaseng.2024.108627","DOIUrl":null,"url":null,"abstract":"<div><div>Interferometric null test of optical aspheres and freeforms is one of the most established methods, in spite of recognized limitations related to positioning of the test surface. Slight misalignment of the surface in the null test system can introduce remarkable wave aberrations. Current approaches for positioning the test surface are based on a series of fiducial marks or retroreflectors set at given spots around the test surface, which consequently suffer the problem of datum transformation. We propose a method for positioning the test surface in a null test by cat's eye interference without any fiducial marks or retroreflectors. A computer-generated hologram (CGH) is used as null optics fabricated with null test pattern, alignment pattern and positioning pattern. A part of test beam with relatively small f/number is diffracted through the positioning pattern and then focuses on certain spots of the test surface. The cat's eye reflection from the test surface returns to the interferometer and interferes with the reference beam. It is then possible to precisely position the test surface by measuring the wavefront error of the cat's eye interference. The design method for such a CGH positioning pattern is presented, following the physical constraint that the surface normal at the cay's eye reflection is right the angular bisector of the positioning beam. Analysis on the positioning performance is then presented to show the sensitivity to misalignment including defocus, lateral shift and tip-tilt, which at last is experimentally verified by measuring an even asphere with a CGH.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positioning of the test surface in a CGH null test by cat's eye interference\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interferometric null test of optical aspheres and freeforms is one of the most established methods, in spite of recognized limitations related to positioning of the test surface. Slight misalignment of the surface in the null test system can introduce remarkable wave aberrations. Current approaches for positioning the test surface are based on a series of fiducial marks or retroreflectors set at given spots around the test surface, which consequently suffer the problem of datum transformation. We propose a method for positioning the test surface in a null test by cat's eye interference without any fiducial marks or retroreflectors. A computer-generated hologram (CGH) is used as null optics fabricated with null test pattern, alignment pattern and positioning pattern. A part of test beam with relatively small f/number is diffracted through the positioning pattern and then focuses on certain spots of the test surface. The cat's eye reflection from the test surface returns to the interferometer and interferes with the reference beam. It is then possible to precisely position the test surface by measuring the wavefront error of the cat's eye interference. The design method for such a CGH positioning pattern is presented, following the physical constraint that the surface normal at the cay's eye reflection is right the angular bisector of the positioning beam. Analysis on the positioning performance is then presented to show the sensitivity to misalignment including defocus, lateral shift and tip-tilt, which at last is experimentally verified by measuring an even asphere with a CGH.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624006055\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006055","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对光学非球面和自由曲面进行干涉无效测试是最成熟的方法之一,尽管测试表面的定位存在公认的局限性。零点测试系统中表面的轻微偏差就会带来明显的波像差。目前对测试表面进行定位的方法是在测试表面的指定位置设置一系列靶标或反向反射器,因此存在基准转换问题。我们提出了一种通过猫眼干涉在空测中定位测试表面的方法,无需任何靶标或反向反射器。利用计算机生成的全息图(CGH)作为无效光学器件,制作出无效测试图案、对齐图案和定位图案。部分 f/number 较小的测试光束通过定位图案衍射,然后聚焦在测试表面的某些点上。测试表面的猫眼反射返回干涉仪,与参考光束发生干涉。这样就可以通过测量猫眼干涉的波前误差来精确定位测试表面。根据猫眼反射处的表面法线与定位光束的角平分线成正比这一物理约束条件,介绍了这种 CGH 定位模式的设计方法。然后对定位性能进行分析,以显示对偏差(包括离焦、侧移和尖端倾斜)的敏感性,最后通过使用 CGH 测量均匀非球面进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Positioning of the test surface in a CGH null test by cat's eye interference
Interferometric null test of optical aspheres and freeforms is one of the most established methods, in spite of recognized limitations related to positioning of the test surface. Slight misalignment of the surface in the null test system can introduce remarkable wave aberrations. Current approaches for positioning the test surface are based on a series of fiducial marks or retroreflectors set at given spots around the test surface, which consequently suffer the problem of datum transformation. We propose a method for positioning the test surface in a null test by cat's eye interference without any fiducial marks or retroreflectors. A computer-generated hologram (CGH) is used as null optics fabricated with null test pattern, alignment pattern and positioning pattern. A part of test beam with relatively small f/number is diffracted through the positioning pattern and then focuses on certain spots of the test surface. The cat's eye reflection from the test surface returns to the interferometer and interferes with the reference beam. It is then possible to precisely position the test surface by measuring the wavefront error of the cat's eye interference. The design method for such a CGH positioning pattern is presented, following the physical constraint that the surface normal at the cay's eye reflection is right the angular bisector of the positioning beam. Analysis on the positioning performance is then presented to show the sensitivity to misalignment including defocus, lateral shift and tip-tilt, which at last is experimentally verified by measuring an even asphere with a CGH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane Wafer chamfering grinding wheels dressing via dynamic deflection laser beam Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays Enhanced light field depth estimation through occlusion refinement and feature fusion Highly-secure scattering-media-based key storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1