{"title":"基于数字自校准点源全息图的单次菲涅尔不相干全息术","authors":"","doi":"10.1016/j.optlaseng.2024.108616","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-shot Fresnel incoherent correlation holography based on digital self-calibrated point source holograms\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005943\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Single-shot Fresnel incoherent correlation holography based on digital self-calibrated point source holograms
Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques