利用数字梯度传感技术研究带有任意方向裂纹的圆柱形壳体中的应力奇异点

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-10-01 DOI:10.1016/j.optlaseng.2024.108612
{"title":"利用数字梯度传感技术研究带有任意方向裂纹的圆柱形壳体中的应力奇异点","authors":"","doi":"10.1016/j.optlaseng.2024.108612","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on stress singularities in cylindrical shells with an arbitrary oriented crack using digital gradient sensing technique\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005906\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文应用透射数字梯度传感(DGS)技术分析了圆柱形壳体中任意定向裂纹尖端的应力奇异性。根据几何光学成像原理,提出了混合模式断裂下圆柱形壳体倾斜裂纹尖端附近光学路径的理论模型。建立了 DGS 技术的光学控制方程,将裂纹顶端的混合模式应力强度分形(SIF)与壳体几何参数和倾斜裂纹尺寸联系起来,并利用该控制方程从理论上绘制了角变形等值线。对含有不同倾斜角度边缘裂纹的聚甲基丙烯酸甲酯(PMMA)圆柱形壳体进行了单轴拉伸试验,并根据线性弹性断裂力学确定了 SIF 的最佳计算区域。分别研究了壳半径、壳厚度、裂纹长度和裂纹角度对混合模式 SIF 的影响。这些结果表明,DGS 技术能有效、准确地评估圆柱形壳体中任意方向裂纹周围的应力奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on stress singularities in cylindrical shells with an arbitrary oriented crack using digital gradient sensing technique
In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane Wafer chamfering grinding wheels dressing via dynamic deflection laser beam Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays Enhanced light field depth estimation through occlusion refinement and feature fusion Highly-secure scattering-media-based key storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1