{"title":"利用数字梯度传感技术研究带有任意方向裂纹的圆柱形壳体中的应力奇异点","authors":"","doi":"10.1016/j.optlaseng.2024.108612","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on stress singularities in cylindrical shells with an arbitrary oriented crack using digital gradient sensing technique\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005906\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Study on stress singularities in cylindrical shells with an arbitrary oriented crack using digital gradient sensing technique
In this paper, the transmitted digital gradient sensing (DGS) technique is applied to analyze stress singularity at the tip of an arbitrary oriented crack in a cylindrical shell. A thoretical model of the opitcal path near the tip of the inclined crack in a cylindrical shell under mixed-mode fracture is proposed based on the geometric optical imaging principle. An optical governing equation of DGS technique is established to relate the mixed-mode stress intensity fractors (SIFs) at the crack tip to the shell geometry parameters and the inclined crack sizes, and the angular deflection contours are theoretically plotted using this govering equation. Uniaxial tensile tests are carried out on polymethyl methacrylate (PMMA) cylindrical shells containing an edge crack with different inclined angles, and the optimal calculation area for the exaction of SIFs is determined from linear elasitic fracture mechanics. The effects of shell radius, shell thick, crack length, and crack angle on the mixed-mode SIFs are studied, respectively. These results show that the DGS technique is effective and accurate to evalute the stress singulary around an arbitrary oriented cracks in cylindrical shells.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques