Mehdi Beshtar , Afsanehsadat Larimi , Ali Akbar Asgharinezhad
{"title":"钛活化金属有机框架纳米光催化材料增强的超超深光催化氧化脱硫能力","authors":"Mehdi Beshtar , Afsanehsadat Larimi , Ali Akbar Asgharinezhad","doi":"10.1016/j.jphotochem.2024.116056","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the escalating global demand for fossil fuels and the urgent environmental concerns associated with their use necessitates the development and implementation of efficient and cost-effective techniques for the removal of sulfur compounds. In this study, titanium-activated MIL-101(Fe) was utilized for the removal of organosulfur compounds through the photocatalytic oxidation desulfurization (PODS) process. The coexistence of active sites with titanium and iron resulted in an ultra-deep desulfurization. The impact of titanium loading was assessed, with TxML representing the ratio of Ti to Fe (x = 1, 1.5, and 2, respectively). Nanophotocatalysts were fabricated by solvothermal method. The physicochemical properties of the new materials were investigated by performing XRD, TEM, FT-IR, FESEM, EDX, UV–Vis DRS, PL, GC–MS, ESR, TGA, transient photocurrent, and nitrogen adsorption–desorption analyses. The effect of titanium loading on the structure, and performance of photocatalysts in the PODS reaction was investigated. The reaction parameters were optimized for maximum efficiency. Under optimal conditions of T2ML loading at 1.5 g/L, a volumetric solvent to fuel ratio (S/F) of 1, and a temperature of 50 ℃, T2ML shows the best performance by removing 100 % of dibenzothiophene.</div><div>Kinetic experiments revealed that the PODS reaction obeys a pseudo-first order equation, and activation energy is 47.08 kJ.mol<sup>−1</sup>.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116056"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced super-ultra-deep photocatalytic oxidative desulfurization by titanium-activated metal-organic frameworks nanophotocataltyst\",\"authors\":\"Mehdi Beshtar , Afsanehsadat Larimi , Ali Akbar Asgharinezhad\",\"doi\":\"10.1016/j.jphotochem.2024.116056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing the escalating global demand for fossil fuels and the urgent environmental concerns associated with their use necessitates the development and implementation of efficient and cost-effective techniques for the removal of sulfur compounds. In this study, titanium-activated MIL-101(Fe) was utilized for the removal of organosulfur compounds through the photocatalytic oxidation desulfurization (PODS) process. The coexistence of active sites with titanium and iron resulted in an ultra-deep desulfurization. The impact of titanium loading was assessed, with TxML representing the ratio of Ti to Fe (x = 1, 1.5, and 2, respectively). Nanophotocatalysts were fabricated by solvothermal method. The physicochemical properties of the new materials were investigated by performing XRD, TEM, FT-IR, FESEM, EDX, UV–Vis DRS, PL, GC–MS, ESR, TGA, transient photocurrent, and nitrogen adsorption–desorption analyses. The effect of titanium loading on the structure, and performance of photocatalysts in the PODS reaction was investigated. The reaction parameters were optimized for maximum efficiency. Under optimal conditions of T2ML loading at 1.5 g/L, a volumetric solvent to fuel ratio (S/F) of 1, and a temperature of 50 ℃, T2ML shows the best performance by removing 100 % of dibenzothiophene.</div><div>Kinetic experiments revealed that the PODS reaction obeys a pseudo-first order equation, and activation energy is 47.08 kJ.mol<sup>−1</sup>.</div></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":\"459 \",\"pages\":\"Article 116056\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024006002\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced super-ultra-deep photocatalytic oxidative desulfurization by titanium-activated metal-organic frameworks nanophotocataltyst
Addressing the escalating global demand for fossil fuels and the urgent environmental concerns associated with their use necessitates the development and implementation of efficient and cost-effective techniques for the removal of sulfur compounds. In this study, titanium-activated MIL-101(Fe) was utilized for the removal of organosulfur compounds through the photocatalytic oxidation desulfurization (PODS) process. The coexistence of active sites with titanium and iron resulted in an ultra-deep desulfurization. The impact of titanium loading was assessed, with TxML representing the ratio of Ti to Fe (x = 1, 1.5, and 2, respectively). Nanophotocatalysts were fabricated by solvothermal method. The physicochemical properties of the new materials were investigated by performing XRD, TEM, FT-IR, FESEM, EDX, UV–Vis DRS, PL, GC–MS, ESR, TGA, transient photocurrent, and nitrogen adsorption–desorption analyses. The effect of titanium loading on the structure, and performance of photocatalysts in the PODS reaction was investigated. The reaction parameters were optimized for maximum efficiency. Under optimal conditions of T2ML loading at 1.5 g/L, a volumetric solvent to fuel ratio (S/F) of 1, and a temperature of 50 ℃, T2ML shows the best performance by removing 100 % of dibenzothiophene.
Kinetic experiments revealed that the PODS reaction obeys a pseudo-first order equation, and activation energy is 47.08 kJ.mol−1.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.