基于加权共同空间模式的多源脑电图时间序列适应正则化

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2024-10-03 DOI:10.1016/j.compeleceng.2024.109680
{"title":"基于加权共同空间模式的多源脑电图时间序列适应正则化","authors":"","doi":"10.1016/j.compeleceng.2024.109680","DOIUrl":null,"url":null,"abstract":"<div><div>Brain–computer interfaces (BCIs) have garnered significant attention due to their ability to actualize previously fantastical concepts through enabling direct communication between the brain and peripherals. However, electroencephalogram (EEG) time series are inherently vulnerable and subject-specific, necessitating a calibration process that is both intricate and time-consuming for different subjects. To address this issue, we present a feature fusion based adaptation regularization algorithm named as weighted common spatial pattern feature-based adaptation regularization (WCSPAR) to improve the classification performance for multi-source motor imagery EEG signals. Specifically, to leverage information from source domains, we refine the method for constructing covariance matrices within the common spatial pattern framework by incorporating information from source domains and introducing a classifier to predict pseudo labels in target domain. Furthermore, to fully exploit the inter-domain information, we present a similarity estimation approach utilizing Riemannian distance to quantify different contributions from different source domains. Additionally, we devise an uncertainty-free classifier based on adaptation regularization transfer learning to prevent negative transfer. To evaluate the performance of WCSPAR, we conduct comparative experiments involving eight benchmark algorithms. Experimental results demonstrate the effectiveness of WCSPAR, which achieved the highest average accuracy of 80.75% when compared with other state-of-the-art algorithms.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted common spatial pattern based adaptation regularization for multi-source EEG time series\",\"authors\":\"\",\"doi\":\"10.1016/j.compeleceng.2024.109680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Brain–computer interfaces (BCIs) have garnered significant attention due to their ability to actualize previously fantastical concepts through enabling direct communication between the brain and peripherals. However, electroencephalogram (EEG) time series are inherently vulnerable and subject-specific, necessitating a calibration process that is both intricate and time-consuming for different subjects. To address this issue, we present a feature fusion based adaptation regularization algorithm named as weighted common spatial pattern feature-based adaptation regularization (WCSPAR) to improve the classification performance for multi-source motor imagery EEG signals. Specifically, to leverage information from source domains, we refine the method for constructing covariance matrices within the common spatial pattern framework by incorporating information from source domains and introducing a classifier to predict pseudo labels in target domain. Furthermore, to fully exploit the inter-domain information, we present a similarity estimation approach utilizing Riemannian distance to quantify different contributions from different source domains. Additionally, we devise an uncertainty-free classifier based on adaptation regularization transfer learning to prevent negative transfer. To evaluate the performance of WCSPAR, we conduct comparative experiments involving eight benchmark algorithms. Experimental results demonstrate the effectiveness of WCSPAR, which achieved the highest average accuracy of 80.75% when compared with other state-of-the-art algorithms.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624006074\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006074","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BCIs)通过实现大脑与外围设备之间的直接通信,能够将以前天马行空的概念变为现实,因此备受关注。然而,脑电图(EEG)时间序列本身具有脆弱性和特定对象性,因此需要针对不同对象进行复杂而耗时的校准过程。为了解决这个问题,我们提出了一种基于特征融合的适应正则化算法,称为基于加权共同空间模式特征的适应正则化(WCSPAR),以提高多源运动图像脑电信号的分类性能。具体来说,为了充分利用源域的信息,我们在共同空间模式框架内改进了构建协方差矩阵的方法,纳入了源域的信息,并引入了一个分类器来预测目标域的伪标签。此外,为了充分利用域间信息,我们提出了一种利用黎曼距离的相似性估计方法,以量化来自不同源域的不同贡献。此外,我们还设计了一种基于适应正则化迁移学习的无不确定性分类器,以防止负迁移。为了评估 WCSPAR 的性能,我们进行了八种基准算法的对比实验。实验结果证明了 WCSPAR 的有效性,与其他最先进的算法相比,WCSPAR 达到了最高的平均准确率 80.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted common spatial pattern based adaptation regularization for multi-source EEG time series
Brain–computer interfaces (BCIs) have garnered significant attention due to their ability to actualize previously fantastical concepts through enabling direct communication between the brain and peripherals. However, electroencephalogram (EEG) time series are inherently vulnerable and subject-specific, necessitating a calibration process that is both intricate and time-consuming for different subjects. To address this issue, we present a feature fusion based adaptation regularization algorithm named as weighted common spatial pattern feature-based adaptation regularization (WCSPAR) to improve the classification performance for multi-source motor imagery EEG signals. Specifically, to leverage information from source domains, we refine the method for constructing covariance matrices within the common spatial pattern framework by incorporating information from source domains and introducing a classifier to predict pseudo labels in target domain. Furthermore, to fully exploit the inter-domain information, we present a similarity estimation approach utilizing Riemannian distance to quantify different contributions from different source domains. Additionally, we devise an uncertainty-free classifier based on adaptation regularization transfer learning to prevent negative transfer. To evaluate the performance of WCSPAR, we conduct comparative experiments involving eight benchmark algorithms. Experimental results demonstrate the effectiveness of WCSPAR, which achieved the highest average accuracy of 80.75% when compared with other state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems Multi-faceted sustainability improvement in low voltage power distribution network employing DG and capacitor bank A novel DDoS detection method using multi-layer stacking in SDN environment LbPV: Lattice-based Privacy-preserving mutual authentication scheme for VANET A robust secret data sharing through coverless video steganography based on average DC coefficient on bit plane segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1