通过直接 S 波分裂揭示极乐行星下的火星地震各向异性

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2024-10-01 DOI:10.1016/j.epsl.2024.119047
Jing Shi , Cunrui Han , Tao Wang , Chao Qi , Han Chen , Zhihan Yu , Jiaqi Geng , Minghan Yang , Xu Wang , Ling Chen , Hejiu Hui
{"title":"通过直接 S 波分裂揭示极乐行星下的火星地震各向异性","authors":"Jing Shi ,&nbsp;Cunrui Han ,&nbsp;Tao Wang ,&nbsp;Chao Qi ,&nbsp;Han Chen ,&nbsp;Zhihan Yu ,&nbsp;Jiaqi Geng ,&nbsp;Minghan Yang ,&nbsp;Xu Wang ,&nbsp;Ling Chen ,&nbsp;Hejiu Hui","doi":"10.1016/j.epsl.2024.119047","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic anisotropy, arising from the crystallographic/lattice-preferred orientation of anisotropic minerals or the shape-preferred orientation of melts or cracks, can establish a critical link between Mars's past evolution and its current state. So far, seismic anisotropy in Mars has been proposed due to different velocities of vertically and horizontally polarized shear waves in the Martian crust, obtained from crustal converted waves, multiples, and surface waves recorded by the InSight seismometer. However, the shear wave splitting, which stands out as a straightforward indicator of seismic anisotropy, has not been reported using marsquake records. In this study, we employ low-frequency marsquakes detected by the InSight seismometer to reveal shear wave splitting in marsquake recordings. We find that the direct <em>S</em> waves of three marsquake recordings (S0173a, S0235b, and S1133c) with high signal-to-noise ratios exhibit the splitting phenomenon. We rule out the possibility of apparent anisotropy through synthetic tests, affirming the presence of seismic anisotropy in Mars. The delay time measured from the direct <em>S</em> wave splitting is too large to be solely attributed to the seismic anisotropy in the upper crust (0 – 10 km) beneath the InSight. Thus, seismic anisotropy in the deeper region of Mars is required. Combined with other geophysical evidence near the InSight landing site, the seismic anisotropy observed in this study implies the aligned cracks in the crust are greater than 10 km beneath the InSight and/or the existence of mantle flow underneath the Elysium Planitia of Mars.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119047"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Martian seismic anisotropy underneath Elysium Planitia revealed by direct S wave splitting\",\"authors\":\"Jing Shi ,&nbsp;Cunrui Han ,&nbsp;Tao Wang ,&nbsp;Chao Qi ,&nbsp;Han Chen ,&nbsp;Zhihan Yu ,&nbsp;Jiaqi Geng ,&nbsp;Minghan Yang ,&nbsp;Xu Wang ,&nbsp;Ling Chen ,&nbsp;Hejiu Hui\",\"doi\":\"10.1016/j.epsl.2024.119047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seismic anisotropy, arising from the crystallographic/lattice-preferred orientation of anisotropic minerals or the shape-preferred orientation of melts or cracks, can establish a critical link between Mars's past evolution and its current state. So far, seismic anisotropy in Mars has been proposed due to different velocities of vertically and horizontally polarized shear waves in the Martian crust, obtained from crustal converted waves, multiples, and surface waves recorded by the InSight seismometer. However, the shear wave splitting, which stands out as a straightforward indicator of seismic anisotropy, has not been reported using marsquake records. In this study, we employ low-frequency marsquakes detected by the InSight seismometer to reveal shear wave splitting in marsquake recordings. We find that the direct <em>S</em> waves of three marsquake recordings (S0173a, S0235b, and S1133c) with high signal-to-noise ratios exhibit the splitting phenomenon. We rule out the possibility of apparent anisotropy through synthetic tests, affirming the presence of seismic anisotropy in Mars. The delay time measured from the direct <em>S</em> wave splitting is too large to be solely attributed to the seismic anisotropy in the upper crust (0 – 10 km) beneath the InSight. Thus, seismic anisotropy in the deeper region of Mars is required. Combined with other geophysical evidence near the InSight landing site, the seismic anisotropy observed in this study implies the aligned cracks in the crust are greater than 10 km beneath the InSight and/or the existence of mantle flow underneath the Elysium Planitia of Mars.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"647 \",\"pages\":\"Article 119047\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24004795\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004795","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

各向异性矿物的晶体学/晶格偏好取向或熔体或裂缝的形状偏好取向所产生的地震各向异性,可以在火星过去的演化和现在的状态之间建立关键的联系。迄今为止,有人提出火星的地震各向异性是由于火星地壳中垂直和水平极化剪切波的速度不同造成的,这些剪切波是由 InSight 地震仪记录的地壳转换波、多重波和表面波获得的。然而,剪切波分裂作为地震各向异性的一个直观指标,还没有利用火星地震记录进行过报道。在本研究中,我们利用 InSight 地震仪探测到的低频火星地震来揭示火星地震记录中的剪切波分裂。我们发现信噪比较高的三个火星地震记录(S0173a、S0235b 和 S1133c)中的直接 S 波表现出分裂现象。我们通过合成测试排除了明显各向异性的可能性,肯定了火星地震各向异性的存在。直接 S 波分裂测得的延迟时间过大,不能完全归因于 InSight 下方上地壳(0 - 10 公里)的地震各向异性。因此,需要火星更深区域的地震各向异性。结合 InSight 着陆点附近的其他地球物理证据,本研究中观测到的地震各向异性意味着地壳中的排列裂缝在 InSight 下方大于 10 千米和/或火星极乐行星下方存在地幔流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Martian seismic anisotropy underneath Elysium Planitia revealed by direct S wave splitting
Seismic anisotropy, arising from the crystallographic/lattice-preferred orientation of anisotropic minerals or the shape-preferred orientation of melts or cracks, can establish a critical link between Mars's past evolution and its current state. So far, seismic anisotropy in Mars has been proposed due to different velocities of vertically and horizontally polarized shear waves in the Martian crust, obtained from crustal converted waves, multiples, and surface waves recorded by the InSight seismometer. However, the shear wave splitting, which stands out as a straightforward indicator of seismic anisotropy, has not been reported using marsquake records. In this study, we employ low-frequency marsquakes detected by the InSight seismometer to reveal shear wave splitting in marsquake recordings. We find that the direct S waves of three marsquake recordings (S0173a, S0235b, and S1133c) with high signal-to-noise ratios exhibit the splitting phenomenon. We rule out the possibility of apparent anisotropy through synthetic tests, affirming the presence of seismic anisotropy in Mars. The delay time measured from the direct S wave splitting is too large to be solely attributed to the seismic anisotropy in the upper crust (0 – 10 km) beneath the InSight. Thus, seismic anisotropy in the deeper region of Mars is required. Combined with other geophysical evidence near the InSight landing site, the seismic anisotropy observed in this study implies the aligned cracks in the crust are greater than 10 km beneath the InSight and/or the existence of mantle flow underneath the Elysium Planitia of Mars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Elemental-organic geochemical evidence for the lacustrine metalimnetic oxygen minimum dynamics in the Mid-Late Triassic Chang 7 shales Inverted metamorphic gradient in the Zanhuang nappe/thrust system, north China indicates large-scale thrust stacking in an Archean Orogen Subduction-stalled plume tail triggers Tarim large igneous province Editorial Board Diffusion of Sr and Ba in plagioclase: Composition and silica activity dependencies, and application to volcanic rocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1