Xinchu Wang , Biying Chen , Hui Nai , Cong-Qiang Liu , Guannan Dong , Naizhong Zhang , Si-Liang Li , Jonathan Gropp , Jennifer McIntosh , Rob M. Ellam , John M. Eiler , Sheng Xu
{"title":"成团同位素制约煤层甲烷中的热生和次生微生物甲烷起源","authors":"Xinchu Wang , Biying Chen , Hui Nai , Cong-Qiang Liu , Guannan Dong , Naizhong Zhang , Si-Liang Li , Jonathan Gropp , Jennifer McIntosh , Rob M. Ellam , John M. Eiler , Sheng Xu","doi":"10.1016/j.epsl.2024.119023","DOIUrl":null,"url":null,"abstract":"<div><div>Methane is an economic energy resource and potent greenhouse gas. Distinguishing secondary microbial methane from thermogenic gas is important for natural gas exploration and consideration of subsurface microbial activity in the global carbon cycle, but remains challenging. To understand controls on methane origins in natural gas systems, we investigated the methane clumped isotopologue distributions in the Qinshui Basin high-thermal maturity coal bed methane (CBM) reservoir. Here, near-equilibrium clumped isotopologues distribution (Δ<sup>13</sup>CH<sub>3</sub>D and Δ<sup>12</sup>CH<sub>2</sub>D<sub>2</sub>) inferred a temperature interval of 21.6–252.3 °C. The high-temperature thermodynamic equilibrium most likely represents original thermogenic CBM characteristics during coalification. The low-temperature equilibrium clumped isotopologue distributions suggest microbial alteration to CH<sub>4</sub> isotopic bond ordering by increased enzymatically catalyzed isotopic exchange. The independent constraints from clumped isotopes, integrated with other geochemical and genomic evidence, confirm notable secondary microbial methane from biodegradation in the highly mature reservoir. Thus, methane clumped isotopes can be used as unequivocal tracers to distinguish secondary microbial methane from thermogenic gases and hence provide the ability to incorporate them separately into global methane budgets.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119023"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clumped isotopes constrain thermogenic and secondary microbial methane origins in coal bed methane\",\"authors\":\"Xinchu Wang , Biying Chen , Hui Nai , Cong-Qiang Liu , Guannan Dong , Naizhong Zhang , Si-Liang Li , Jonathan Gropp , Jennifer McIntosh , Rob M. Ellam , John M. Eiler , Sheng Xu\",\"doi\":\"10.1016/j.epsl.2024.119023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methane is an economic energy resource and potent greenhouse gas. Distinguishing secondary microbial methane from thermogenic gas is important for natural gas exploration and consideration of subsurface microbial activity in the global carbon cycle, but remains challenging. To understand controls on methane origins in natural gas systems, we investigated the methane clumped isotopologue distributions in the Qinshui Basin high-thermal maturity coal bed methane (CBM) reservoir. Here, near-equilibrium clumped isotopologues distribution (Δ<sup>13</sup>CH<sub>3</sub>D and Δ<sup>12</sup>CH<sub>2</sub>D<sub>2</sub>) inferred a temperature interval of 21.6–252.3 °C. The high-temperature thermodynamic equilibrium most likely represents original thermogenic CBM characteristics during coalification. The low-temperature equilibrium clumped isotopologue distributions suggest microbial alteration to CH<sub>4</sub> isotopic bond ordering by increased enzymatically catalyzed isotopic exchange. The independent constraints from clumped isotopes, integrated with other geochemical and genomic evidence, confirm notable secondary microbial methane from biodegradation in the highly mature reservoir. Thus, methane clumped isotopes can be used as unequivocal tracers to distinguish secondary microbial methane from thermogenic gases and hence provide the ability to incorporate them separately into global methane budgets.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"647 \",\"pages\":\"Article 119023\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24004552\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004552","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Clumped isotopes constrain thermogenic and secondary microbial methane origins in coal bed methane
Methane is an economic energy resource and potent greenhouse gas. Distinguishing secondary microbial methane from thermogenic gas is important for natural gas exploration and consideration of subsurface microbial activity in the global carbon cycle, but remains challenging. To understand controls on methane origins in natural gas systems, we investigated the methane clumped isotopologue distributions in the Qinshui Basin high-thermal maturity coal bed methane (CBM) reservoir. Here, near-equilibrium clumped isotopologues distribution (Δ13CH3D and Δ12CH2D2) inferred a temperature interval of 21.6–252.3 °C. The high-temperature thermodynamic equilibrium most likely represents original thermogenic CBM characteristics during coalification. The low-temperature equilibrium clumped isotopologue distributions suggest microbial alteration to CH4 isotopic bond ordering by increased enzymatically catalyzed isotopic exchange. The independent constraints from clumped isotopes, integrated with other geochemical and genomic evidence, confirm notable secondary microbial methane from biodegradation in the highly mature reservoir. Thus, methane clumped isotopes can be used as unequivocal tracers to distinguish secondary microbial methane from thermogenic gases and hence provide the ability to incorporate them separately into global methane budgets.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.