利用阻抗光谱学优化高效率过氧化物太阳能电池的电子传输层

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-10-02 DOI:10.1016/j.solmat.2024.113196
Marouan Khalifa , Marwa Dkhili , Selma Aouida , Hatem Ezzaouia
{"title":"利用阻抗光谱学优化高效率过氧化物太阳能电池的电子传输层","authors":"Marouan Khalifa ,&nbsp;Marwa Dkhili ,&nbsp;Selma Aouida ,&nbsp;Hatem Ezzaouia","doi":"10.1016/j.solmat.2024.113196","DOIUrl":null,"url":null,"abstract":"<div><div>The best interface for a perovskite solar cell is designed to facilitate effective charge transport to achieve a high-power conversion efficiency. Tin dioxide (SnO<sub>2</sub>) is widely recognized as an electron transport material for perovskite solar cells, offering advantages such as low hysteresis, low defect concentration, and low fabrication temperature. However, the low conduction band edge of SnO<sub>2</sub> restricts the built-in potential of the solar cell device. In this study, we designed a double layer of electron transport by applying zinc oxide (ZnO) on SnO<sub>2</sub> to improve the electron transport properties in perovskite solar cells. The bilayer of electron transport enhances the interfaces between the perovskite and the electron transport layer, leading to an improvement in the efficiency and stability of solar cell devices up to 11.71 % compared to a single SnO2 layer device with a PCE of 9.06 %. The introduction of ZnO reduces charge recombination, resulting in a lower recombination resistance (Rrec). Also, charge transfer resistance (Rct) of ZnO/SnO<sub>2</sub> increased to 16.6KΩ compared to a single SnO<sub>2</sub> layer device with a Rct of 5.29KΩ. Our findings provide valuable insights into the design of electron transport layers for perovskite solar cells and highlight the importance of electrochemical impedance spectroscopy in understanding the dynamic processes that govern their performance.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113196"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing electron transport layers for high-efficiency perovskite solar cells using impedance spectroscopy\",\"authors\":\"Marouan Khalifa ,&nbsp;Marwa Dkhili ,&nbsp;Selma Aouida ,&nbsp;Hatem Ezzaouia\",\"doi\":\"10.1016/j.solmat.2024.113196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The best interface for a perovskite solar cell is designed to facilitate effective charge transport to achieve a high-power conversion efficiency. Tin dioxide (SnO<sub>2</sub>) is widely recognized as an electron transport material for perovskite solar cells, offering advantages such as low hysteresis, low defect concentration, and low fabrication temperature. However, the low conduction band edge of SnO<sub>2</sub> restricts the built-in potential of the solar cell device. In this study, we designed a double layer of electron transport by applying zinc oxide (ZnO) on SnO<sub>2</sub> to improve the electron transport properties in perovskite solar cells. The bilayer of electron transport enhances the interfaces between the perovskite and the electron transport layer, leading to an improvement in the efficiency and stability of solar cell devices up to 11.71 % compared to a single SnO2 layer device with a PCE of 9.06 %. The introduction of ZnO reduces charge recombination, resulting in a lower recombination resistance (Rrec). Also, charge transfer resistance (Rct) of ZnO/SnO<sub>2</sub> increased to 16.6KΩ compared to a single SnO<sub>2</sub> layer device with a Rct of 5.29KΩ. Our findings provide valuable insights into the design of electron transport layers for perovskite solar cells and highlight the importance of electrochemical impedance spectroscopy in understanding the dynamic processes that govern their performance.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113196\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005087\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005087","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

设计包晶太阳能电池的最佳界面是为了促进有效的电荷传输,从而实现高功率转换效率。二氧化锡(SnO2)具有低滞后、低缺陷浓度和低制造温度等优点,被公认为是一种用于包晶体太阳能电池的电子传输材料。然而,二氧化锡的低导带边限制了太阳能电池器件的内置潜力。在本研究中,我们通过在二氧化锡上涂覆氧化锌(ZnO)设计了双层电子传输层,以改善过氧化物太阳能电池的电子传输特性。双层电子传输层增强了过氧化物和电子传输层之间的界面,与 PCE 为 9.06% 的单层 SnO2 设备相比,太阳能电池设备的效率和稳定性提高了 11.71%。氧化锌的引入减少了电荷重组,从而降低了重组电阻(Rrec)。此外,ZnO/SnO2 器件的电荷转移电阻(Rct)增至 16.6KΩ,而单层 SnO2 器件的 Rct 为 5.29KΩ。我们的研究结果为设计过氧化物太阳能电池的电子传输层提供了宝贵的见解,并强调了电化学阻抗光谱在了解支配其性能的动态过程方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing electron transport layers for high-efficiency perovskite solar cells using impedance spectroscopy
The best interface for a perovskite solar cell is designed to facilitate effective charge transport to achieve a high-power conversion efficiency. Tin dioxide (SnO2) is widely recognized as an electron transport material for perovskite solar cells, offering advantages such as low hysteresis, low defect concentration, and low fabrication temperature. However, the low conduction band edge of SnO2 restricts the built-in potential of the solar cell device. In this study, we designed a double layer of electron transport by applying zinc oxide (ZnO) on SnO2 to improve the electron transport properties in perovskite solar cells. The bilayer of electron transport enhances the interfaces between the perovskite and the electron transport layer, leading to an improvement in the efficiency and stability of solar cell devices up to 11.71 % compared to a single SnO2 layer device with a PCE of 9.06 %. The introduction of ZnO reduces charge recombination, resulting in a lower recombination resistance (Rrec). Also, charge transfer resistance (Rct) of ZnO/SnO2 increased to 16.6KΩ compared to a single SnO2 layer device with a Rct of 5.29KΩ. Our findings provide valuable insights into the design of electron transport layers for perovskite solar cells and highlight the importance of electrochemical impedance spectroscopy in understanding the dynamic processes that govern their performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1