{"title":"量化硅太阳能电池的原生和切边重组","authors":"W. Wöhler , J.M. Greulich , A.W. Bett","doi":"10.1016/j.solmat.2024.113192","DOIUrl":null,"url":null,"abstract":"<div><div>To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup><mspace></mspace><mi>to</mi><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, with values at <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mtext>10</mtext><msup><mrow></mrow><mrow><mi>15</mi></mrow></msup><mspace></mspace><mtext>cm</mtext><msup><mrow></mrow><mrow><mi>−3</mi></mrow></msup></mrow></math></span> being <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>250</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>TLS</mtext></mrow></msub><mo>=</mo><mtext>750</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span> and <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>scribe</mtext></mrow></msub><mo>=</mo><mtext>11 000</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>. The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,native</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>2.41</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,TLS</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>7.77</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,scribe</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>115</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>. The corresponding efficiency losses are approximated by numerical simulations with <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>-0.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the full cell as well as <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,half</mtext></mrow></msub><mo>=</mo><mtext>-0.3</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,shingle</mtext></mrow></msub><mo>=</mo><mtext>-1.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113192"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying native and cut edge recombination of silicon solar cells\",\"authors\":\"W. Wöhler , J.M. Greulich , A.W. Bett\",\"doi\":\"10.1016/j.solmat.2024.113192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup><mspace></mspace><mi>to</mi><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, with values at <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mtext>10</mtext><msup><mrow></mrow><mrow><mi>15</mi></mrow></msup><mspace></mspace><mtext>cm</mtext><msup><mrow></mrow><mrow><mi>−3</mi></mrow></msup></mrow></math></span> being <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>250</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>TLS</mtext></mrow></msub><mo>=</mo><mtext>750</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span> and <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>scribe</mtext></mrow></msub><mo>=</mo><mtext>11 000</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>. The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,native</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>2.41</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,TLS</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>7.77</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,scribe</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>115</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>. The corresponding efficiency losses are approximated by numerical simulations with <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>-0.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the full cell as well as <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,half</mtext></mrow></msub><mo>=</mo><mtext>-0.3</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,shingle</mtext></mrow></msub><mo>=</mo><mtext>-1.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113192\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702482400504X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482400504X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Quantifying native and cut edge recombination of silicon solar cells
To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of , with values at being , and . The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of , and . The corresponding efficiency losses are approximated by numerical simulations with for the full cell as well as and for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.