Xiufeng Wu , Peng Ji , Chengyang Liu , Longfei Li , Zhongwei Zhao , Zhiyuan Zhang
{"title":"带粘弹性阻尼器和角度反应控制器的新型被动消能系统的实验和数值研究","authors":"Xiufeng Wu , Peng Ji , Chengyang Liu , Longfei Li , Zhongwei Zhao , Zhiyuan Zhang","doi":"10.1016/j.soildyn.2024.108939","DOIUrl":null,"url":null,"abstract":"<div><div>Sharp and significant changes in the relative angle between beam and column during earthquakes often lead to failure of structural joints. This study proposed a novel passive Energy Dissipation system (PEDs) consisting of a viscoelastic damper (VED) and an angle-reaction controller (ARC). The <span>ARC</span> provides mutual support to the joint by establishing temporary supports in reinforced concrete or steel frames to allow for free-angle multilevel control in the case of excessive relative angle. This feature distinguishes the novel PEDs from previous systems as it allows the reaction force of the temporary support to compensate for the loss of joint rotational stiffness. The cyclic loading tests were conducted by constructing fundamental components, and then a mechanical model for the novel PEDs was established. Numerical simulations were performed to analyze parameter variations and to provide a comprehensive methodology for evaluating the seismic performance of the novel PEDs. The results demonstrated that two mechanisms were effectively incorporated into the novel PEDs: vibration energy dissipation and protection against excessive angles. The multistage flag hysteresis curve confirmed the reliability of our theoretical model in representing this novel PEDs. Therefore, supplementing rotational stiffness while achieving energy dissipation can be considered a new approach for enhancing seismic performance in frame structures.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":"Article 108939"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of a novel passive energy dissipation system with viscoelastic damper and angle-reaction controller\",\"authors\":\"Xiufeng Wu , Peng Ji , Chengyang Liu , Longfei Li , Zhongwei Zhao , Zhiyuan Zhang\",\"doi\":\"10.1016/j.soildyn.2024.108939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sharp and significant changes in the relative angle between beam and column during earthquakes often lead to failure of structural joints. This study proposed a novel passive Energy Dissipation system (PEDs) consisting of a viscoelastic damper (VED) and an angle-reaction controller (ARC). The <span>ARC</span> provides mutual support to the joint by establishing temporary supports in reinforced concrete or steel frames to allow for free-angle multilevel control in the case of excessive relative angle. This feature distinguishes the novel PEDs from previous systems as it allows the reaction force of the temporary support to compensate for the loss of joint rotational stiffness. The cyclic loading tests were conducted by constructing fundamental components, and then a mechanical model for the novel PEDs was established. Numerical simulations were performed to analyze parameter variations and to provide a comprehensive methodology for evaluating the seismic performance of the novel PEDs. The results demonstrated that two mechanisms were effectively incorporated into the novel PEDs: vibration energy dissipation and protection against excessive angles. The multistage flag hysteresis curve confirmed the reliability of our theoretical model in representing this novel PEDs. Therefore, supplementing rotational stiffness while achieving energy dissipation can be considered a new approach for enhancing seismic performance in frame structures.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"187 \",\"pages\":\"Article 108939\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124004913\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124004913","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental and numerical investigation of a novel passive energy dissipation system with viscoelastic damper and angle-reaction controller
Sharp and significant changes in the relative angle between beam and column during earthquakes often lead to failure of structural joints. This study proposed a novel passive Energy Dissipation system (PEDs) consisting of a viscoelastic damper (VED) and an angle-reaction controller (ARC). The ARC provides mutual support to the joint by establishing temporary supports in reinforced concrete or steel frames to allow for free-angle multilevel control in the case of excessive relative angle. This feature distinguishes the novel PEDs from previous systems as it allows the reaction force of the temporary support to compensate for the loss of joint rotational stiffness. The cyclic loading tests were conducted by constructing fundamental components, and then a mechanical model for the novel PEDs was established. Numerical simulations were performed to analyze parameter variations and to provide a comprehensive methodology for evaluating the seismic performance of the novel PEDs. The results demonstrated that two mechanisms were effectively incorporated into the novel PEDs: vibration energy dissipation and protection against excessive angles. The multistage flag hysteresis curve confirmed the reliability of our theoretical model in representing this novel PEDs. Therefore, supplementing rotational stiffness while achieving energy dissipation can be considered a new approach for enhancing seismic performance in frame structures.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.