{"title":"全风向下可调倾角太阳能光伏系统面板的概率特性和风压极值研究","authors":"Terigen Bao , Zhengnong Li , Ou Pu , Bin Huang","doi":"10.1016/j.jweia.2024.105913","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel investigation into the impact of non-Gaussian characteristics on wind pressure peak factors and extreme values in photovoltaic structural panels, addressing a critical gap in current design methodologies. A wind tunnel test was conducted on a rigid model of an adjustable-tilt solar photovoltaic system, providing essential panel wind pressure data. Through a comprehensive analysis of wind pressure time history, probability density, skewness, kurtosis, and statistical distributions, this research identified distinct non-Gaussian characteristics and highlighted sensitive areas on the panel. The study utilized three extreme value estimation methods to calculate peak wind pressures and compared their accuracy. Results demonstrate that the GPD method offers the most precise calculations of extreme wind pressure, outperforming traditional Gaussian-based approaches, which often underestimate peak pressures by 30%–50%. Additionally, the comparison of full-direction wind data with single wind direction extremes reveals potential overestimations in design values, suggesting that using one-directional extremes could inflate extreme wind pressure by 1.1–1.25 times for positive and 1.1 to 1.15 times for negative values. This study underscores the necessity of incorporating non-Gaussian features and full-direction wind considerations in the structural design of photovoltaic systems to avoid underestimation or over-design, particularly in sensitive regions. These findings contribute valuable insights for enhancing the precision and safety of structural design in renewable energy applications.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105913"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on probabilistic characteristics and wind pressure extreme values of adjustable-tilt solar photovoltaic systems panels under full-direction wind\",\"authors\":\"Terigen Bao , Zhengnong Li , Ou Pu , Bin Huang\",\"doi\":\"10.1016/j.jweia.2024.105913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel investigation into the impact of non-Gaussian characteristics on wind pressure peak factors and extreme values in photovoltaic structural panels, addressing a critical gap in current design methodologies. A wind tunnel test was conducted on a rigid model of an adjustable-tilt solar photovoltaic system, providing essential panel wind pressure data. Through a comprehensive analysis of wind pressure time history, probability density, skewness, kurtosis, and statistical distributions, this research identified distinct non-Gaussian characteristics and highlighted sensitive areas on the panel. The study utilized three extreme value estimation methods to calculate peak wind pressures and compared their accuracy. Results demonstrate that the GPD method offers the most precise calculations of extreme wind pressure, outperforming traditional Gaussian-based approaches, which often underestimate peak pressures by 30%–50%. Additionally, the comparison of full-direction wind data with single wind direction extremes reveals potential overestimations in design values, suggesting that using one-directional extremes could inflate extreme wind pressure by 1.1–1.25 times for positive and 1.1 to 1.15 times for negative values. This study underscores the necessity of incorporating non-Gaussian features and full-direction wind considerations in the structural design of photovoltaic systems to avoid underestimation or over-design, particularly in sensitive regions. These findings contribute valuable insights for enhancing the precision and safety of structural design in renewable energy applications.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105913\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002769\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002769","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Research on probabilistic characteristics and wind pressure extreme values of adjustable-tilt solar photovoltaic systems panels under full-direction wind
This study presents a novel investigation into the impact of non-Gaussian characteristics on wind pressure peak factors and extreme values in photovoltaic structural panels, addressing a critical gap in current design methodologies. A wind tunnel test was conducted on a rigid model of an adjustable-tilt solar photovoltaic system, providing essential panel wind pressure data. Through a comprehensive analysis of wind pressure time history, probability density, skewness, kurtosis, and statistical distributions, this research identified distinct non-Gaussian characteristics and highlighted sensitive areas on the panel. The study utilized three extreme value estimation methods to calculate peak wind pressures and compared their accuracy. Results demonstrate that the GPD method offers the most precise calculations of extreme wind pressure, outperforming traditional Gaussian-based approaches, which often underestimate peak pressures by 30%–50%. Additionally, the comparison of full-direction wind data with single wind direction extremes reveals potential overestimations in design values, suggesting that using one-directional extremes could inflate extreme wind pressure by 1.1–1.25 times for positive and 1.1 to 1.15 times for negative values. This study underscores the necessity of incorporating non-Gaussian features and full-direction wind considerations in the structural design of photovoltaic systems to avoid underestimation or over-design, particularly in sensitive regions. These findings contribute valuable insights for enhancing the precision and safety of structural design in renewable energy applications.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.