{"title":"输出约束条件下基于 PDE 的柔性卫星姿态和振动抗扰控制","authors":"Qijia Yao , Hadi Jahanshahi","doi":"10.1016/j.ijnonlinmec.2024.104914","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an anti-disturbance control strategy is exploited for the attitude reorientation and vibration damping of flexible satellite under disturbances and output constraints. The flexible satellite is formulated by partial differential equations (PDEs) and the exploited controller extends the existing results from the following two aspects. (1) The exploited controller is capable of handling the time-varying output constraints by incorporating the barrier Lyapunov function (BLF) with a coupling-based item through Lyapunov analysis. (2) The exploited controller possesses the excellent disturbance rejection property by introducing two disturbance observers to separately identify the disturbance torque and force. The asymptotic stability of the closed-loop system is strictly evaluated. The exploited controller can restrain the attitude reorientation error and the tip deformation always in the predefined output constraints. Lastly, comparative simulations validate and highlight the main results.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDE-based anti-disturbance attitude and vibration control of flexible satellite under output constraints\",\"authors\":\"Qijia Yao , Hadi Jahanshahi\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an anti-disturbance control strategy is exploited for the attitude reorientation and vibration damping of flexible satellite under disturbances and output constraints. The flexible satellite is formulated by partial differential equations (PDEs) and the exploited controller extends the existing results from the following two aspects. (1) The exploited controller is capable of handling the time-varying output constraints by incorporating the barrier Lyapunov function (BLF) with a coupling-based item through Lyapunov analysis. (2) The exploited controller possesses the excellent disturbance rejection property by introducing two disturbance observers to separately identify the disturbance torque and force. The asymptotic stability of the closed-loop system is strictly evaluated. The exploited controller can restrain the attitude reorientation error and the tip deformation always in the predefined output constraints. Lastly, comparative simulations validate and highlight the main results.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002798\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002798","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
PDE-based anti-disturbance attitude and vibration control of flexible satellite under output constraints
In this paper, an anti-disturbance control strategy is exploited for the attitude reorientation and vibration damping of flexible satellite under disturbances and output constraints. The flexible satellite is formulated by partial differential equations (PDEs) and the exploited controller extends the existing results from the following two aspects. (1) The exploited controller is capable of handling the time-varying output constraints by incorporating the barrier Lyapunov function (BLF) with a coupling-based item through Lyapunov analysis. (2) The exploited controller possesses the excellent disturbance rejection property by introducing two disturbance observers to separately identify the disturbance torque and force. The asymptotic stability of the closed-loop system is strictly evaluated. The exploited controller can restrain the attitude reorientation error and the tip deformation always in the predefined output constraints. Lastly, comparative simulations validate and highlight the main results.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.