Satya Brat Tiwari , Andrei Veksha , Wei Ping Chan , Xunchang Fei , Wen Liu , Grzegorz Lisak , Teik-Thye Lim
{"title":"对污水污泥进行酸性水热碳化处理,以提高磷的碱性萃取率并减少微量元素的共萃取率","authors":"Satya Brat Tiwari , Andrei Veksha , Wei Ping Chan , Xunchang Fei , Wen Liu , Grzegorz Lisak , Teik-Thye Lim","doi":"10.1016/j.resconrec.2024.107936","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a two-stage process to recover phosphorus (P) from sewage sludge (SS) hydrochar, aimed at reducing trace element (TE) contamination. SS, mixed with Al-rich alum sludge (AS), underwent acidic HTC to convert Ca-P to Al-P. Alkaline extraction of hydrochar produced a P-rich, TE-deficient extract, as Al-P dissolves at high pH (> 12), leaving TEs insoluble. Optimal conditions for maximum P recovery were high temperature (∼240 °C), Al/P molar ratio (APMR) of ∼4, and feedstock pH of ∼3 – 4. This design process achieved 82 % alkaline P recovery, 34 % higher than the reference process. Overall P recovery ranged from 59 – 75 % in the design process, compared to 30 – 37 % in the reference process. Solid-state NMR revealed the Al-P association in hydrochar through surface complexation. TEs were mainly concentrated in the hydrochar. Thus, this method offers co-treatment of two waste streams with simultaneous resource recovery.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107936"},"PeriodicalIF":11.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidic hydrothermal carbonization of sewage sludge for enhanced alkaline extraction of phosphorus and reduced co-extraction of trace elements\",\"authors\":\"Satya Brat Tiwari , Andrei Veksha , Wei Ping Chan , Xunchang Fei , Wen Liu , Grzegorz Lisak , Teik-Thye Lim\",\"doi\":\"10.1016/j.resconrec.2024.107936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a two-stage process to recover phosphorus (P) from sewage sludge (SS) hydrochar, aimed at reducing trace element (TE) contamination. SS, mixed with Al-rich alum sludge (AS), underwent acidic HTC to convert Ca-P to Al-P. Alkaline extraction of hydrochar produced a P-rich, TE-deficient extract, as Al-P dissolves at high pH (> 12), leaving TEs insoluble. Optimal conditions for maximum P recovery were high temperature (∼240 °C), Al/P molar ratio (APMR) of ∼4, and feedstock pH of ∼3 – 4. This design process achieved 82 % alkaline P recovery, 34 % higher than the reference process. Overall P recovery ranged from 59 – 75 % in the design process, compared to 30 – 37 % in the reference process. Solid-state NMR revealed the Al-P association in hydrochar through surface complexation. TEs were mainly concentrated in the hydrochar. Thus, this method offers co-treatment of two waste streams with simultaneous resource recovery.</div></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"212 \",\"pages\":\"Article 107936\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005299\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005299","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Acidic hydrothermal carbonization of sewage sludge for enhanced alkaline extraction of phosphorus and reduced co-extraction of trace elements
This study presents a two-stage process to recover phosphorus (P) from sewage sludge (SS) hydrochar, aimed at reducing trace element (TE) contamination. SS, mixed with Al-rich alum sludge (AS), underwent acidic HTC to convert Ca-P to Al-P. Alkaline extraction of hydrochar produced a P-rich, TE-deficient extract, as Al-P dissolves at high pH (> 12), leaving TEs insoluble. Optimal conditions for maximum P recovery were high temperature (∼240 °C), Al/P molar ratio (APMR) of ∼4, and feedstock pH of ∼3 – 4. This design process achieved 82 % alkaline P recovery, 34 % higher than the reference process. Overall P recovery ranged from 59 – 75 % in the design process, compared to 30 – 37 % in the reference process. Solid-state NMR revealed the Al-P association in hydrochar through surface complexation. TEs were mainly concentrated in the hydrochar. Thus, this method offers co-treatment of two waste streams with simultaneous resource recovery.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.