{"title":"限制在两平行板之间的 MHD 混合纳米流体的热研究:形状因素分析","authors":"","doi":"10.1016/j.csite.2024.105229","DOIUrl":null,"url":null,"abstract":"<div><div>This article discusses the heat and air transfer characteristics of stable magnetohydrodynamic nanofluid flow between two interconnected sheets under the influence of a magnetic field. The nanofluid is a mixture of equal proportions of ethylene glycol and water. This study examined hybrid nanoparticles containing multi-walled carbon nanotubes (MWCNT) and silver (Ag). This research presents, for the first time, a new method for solving nonlinear equations using HPM Python and AGM Python. In addition, the symbolic solution to HPM and AGM has been attained by employing SymPy and SciPy libraries in Python. The results are presented graphically by comparing them with the fourth-order Runge-Kutta number. The final results reflect a high level of agreement between the analytical and numerical methods on the one hand and HPM Python and AGM Python on the other hand. This examination also investigates the effect of various parameters, including magnetic properties, viscosity coefficients, thermophoretic parameters, Brownian parameters, and nanofluid parameters such as velocity, temperature, and concentration. The results prove that velocity and concentration increase as the magnetic field decreases, whereas the temperature displays an opposite trend. As the Schmidt number increases, both the Nusselt number and concentration decrease. The relationship between concentration and temperature with respect to the Prandtl number indicates that when the Prandtl number decreases, the temperature increases while the concentration declines. It is important to note that the employment of hybrid nanofluids leads to an increase in velocity, temperature, and concentration.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal study of MHD hybrid nano fluids confined between two parallel sheets: Shape factors analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article discusses the heat and air transfer characteristics of stable magnetohydrodynamic nanofluid flow between two interconnected sheets under the influence of a magnetic field. The nanofluid is a mixture of equal proportions of ethylene glycol and water. This study examined hybrid nanoparticles containing multi-walled carbon nanotubes (MWCNT) and silver (Ag). This research presents, for the first time, a new method for solving nonlinear equations using HPM Python and AGM Python. In addition, the symbolic solution to HPM and AGM has been attained by employing SymPy and SciPy libraries in Python. The results are presented graphically by comparing them with the fourth-order Runge-Kutta number. The final results reflect a high level of agreement between the analytical and numerical methods on the one hand and HPM Python and AGM Python on the other hand. This examination also investigates the effect of various parameters, including magnetic properties, viscosity coefficients, thermophoretic parameters, Brownian parameters, and nanofluid parameters such as velocity, temperature, and concentration. The results prove that velocity and concentration increase as the magnetic field decreases, whereas the temperature displays an opposite trend. As the Schmidt number increases, both the Nusselt number and concentration decrease. The relationship between concentration and temperature with respect to the Prandtl number indicates that when the Prandtl number decreases, the temperature increases while the concentration declines. It is important to note that the employment of hybrid nanofluids leads to an increase in velocity, temperature, and concentration.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24012607\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal study of MHD hybrid nano fluids confined between two parallel sheets: Shape factors analysis
This article discusses the heat and air transfer characteristics of stable magnetohydrodynamic nanofluid flow between two interconnected sheets under the influence of a magnetic field. The nanofluid is a mixture of equal proportions of ethylene glycol and water. This study examined hybrid nanoparticles containing multi-walled carbon nanotubes (MWCNT) and silver (Ag). This research presents, for the first time, a new method for solving nonlinear equations using HPM Python and AGM Python. In addition, the symbolic solution to HPM and AGM has been attained by employing SymPy and SciPy libraries in Python. The results are presented graphically by comparing them with the fourth-order Runge-Kutta number. The final results reflect a high level of agreement between the analytical and numerical methods on the one hand and HPM Python and AGM Python on the other hand. This examination also investigates the effect of various parameters, including magnetic properties, viscosity coefficients, thermophoretic parameters, Brownian parameters, and nanofluid parameters such as velocity, temperature, and concentration. The results prove that velocity and concentration increase as the magnetic field decreases, whereas the temperature displays an opposite trend. As the Schmidt number increases, both the Nusselt number and concentration decrease. The relationship between concentration and temperature with respect to the Prandtl number indicates that when the Prandtl number decreases, the temperature increases while the concentration declines. It is important to note that the employment of hybrid nanofluids leads to an increase in velocity, temperature, and concentration.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.