针对多变风浪条件的动态自适应朗缪尔湍流参数化方案:模型应用

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-10-09 DOI:10.1016/j.ocemod.2024.102453
Fangrui Xiu , Zengan Deng
{"title":"针对多变风浪条件的动态自适应朗缪尔湍流参数化方案:模型应用","authors":"Fangrui Xiu ,&nbsp;Zengan Deng","doi":"10.1016/j.ocemod.2024.102453","DOIUrl":null,"url":null,"abstract":"<div><div>Langmuir circulations and turbulence (LT) are crucial in the upper ocean mixed layer, significantly affecting the air-sea exchange of momentum, heat, and mass. The development of an appropriate LT parameterization scheme is vital for ocean modeling. This study employed the Large-eddy Simulation (LES) and the Physics-informed Neural Network (PINN) to optimize the KC04 Langmuir turbulence scheme by dynamically adjusting E<sub>6</sub> as a key parameter determined by winds and waves. The LES simulations under different wind wave states indicated the PINN-inferred values for E<sub>6</sub>. Modelling results from GOTM in OCSPapa station demonstrated that the optimized scheme outperformed the original KC04 scheme in simulating the vertical eddy diffusivity and temperature, with an ∼6.24% annual reduction in the root mean square error (RMSE) for the temperature and an ∼8.23% reduction in the RMSE during autumn. Furthermore, the optimized scheme resulted in a thicker mixed layer, reaching 4.9 m. This enhanced LT parameterization scheme exhibited the improved robustness for variable spatiotemporal resolutions, significantly improving the modeling accuracy.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102453"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamically adaptive Langmuir turbulence parameterization scheme for variable wind wave conditions: Model application\",\"authors\":\"Fangrui Xiu ,&nbsp;Zengan Deng\",\"doi\":\"10.1016/j.ocemod.2024.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Langmuir circulations and turbulence (LT) are crucial in the upper ocean mixed layer, significantly affecting the air-sea exchange of momentum, heat, and mass. The development of an appropriate LT parameterization scheme is vital for ocean modeling. This study employed the Large-eddy Simulation (LES) and the Physics-informed Neural Network (PINN) to optimize the KC04 Langmuir turbulence scheme by dynamically adjusting E<sub>6</sub> as a key parameter determined by winds and waves. The LES simulations under different wind wave states indicated the PINN-inferred values for E<sub>6</sub>. Modelling results from GOTM in OCSPapa station demonstrated that the optimized scheme outperformed the original KC04 scheme in simulating the vertical eddy diffusivity and temperature, with an ∼6.24% annual reduction in the root mean square error (RMSE) for the temperature and an ∼8.23% reduction in the RMSE during autumn. Furthermore, the optimized scheme resulted in a thicker mixed layer, reaching 4.9 m. This enhanced LT parameterization scheme exhibited the improved robustness for variable spatiotemporal resolutions, significantly improving the modeling accuracy.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"192 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001392\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001392","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

朗缪尔环流和湍流(LT)在海洋上层混合层中至关重要,对海气动量、热量和质量交换有重大影响。制定适当的 LT 参数化方案对海洋建模至关重要。本研究采用大涡模拟(LES)和物理信息神经网络(PINN),通过动态调整由风浪决定的关键参数 E6,优化 KC04 Langmuir 湍流方案。不同风浪状态下的 LES 模拟显示了 PINN 所推导的 E6 值。在 OCSPapa 站进行的 GOTM 模拟结果表明,优化方案在模拟垂直涡扩散率和温度方面优于原始 KC04 方案,温度的均方根误差(RMSE)年减幅为 6.24%,秋季的均方根误差减幅为 8.23%。此外,优化后的方案还增加了混合层厚度,达到 4.9 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamically adaptive Langmuir turbulence parameterization scheme for variable wind wave conditions: Model application
Langmuir circulations and turbulence (LT) are crucial in the upper ocean mixed layer, significantly affecting the air-sea exchange of momentum, heat, and mass. The development of an appropriate LT parameterization scheme is vital for ocean modeling. This study employed the Large-eddy Simulation (LES) and the Physics-informed Neural Network (PINN) to optimize the KC04 Langmuir turbulence scheme by dynamically adjusting E6 as a key parameter determined by winds and waves. The LES simulations under different wind wave states indicated the PINN-inferred values for E6. Modelling results from GOTM in OCSPapa station demonstrated that the optimized scheme outperformed the original KC04 scheme in simulating the vertical eddy diffusivity and temperature, with an ∼6.24% annual reduction in the root mean square error (RMSE) for the temperature and an ∼8.23% reduction in the RMSE during autumn. Furthermore, the optimized scheme resulted in a thicker mixed layer, reaching 4.9 m. This enhanced LT parameterization scheme exhibited the improved robustness for variable spatiotemporal resolutions, significantly improving the modeling accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Low power computation of transoceanic wave propagation for tsunami hazard mitigation Discrete variance decay analysis of spurious mixing Global tsunami modelling on a spherical multiple-cell grid Accuracy assessment of recent global ocean tide models in coastal waters of the European North West Shelf Enhancing model temperature estimations in shallow, turbid, coastal regions: Mobile Bay, Alabama
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1