Cristopher Fernández-Blas , Paloma Ruiz-Benito , Antonio Gazol , Elena Granda , Eva Samblás , Irene Granado-Díaz , Miguel A. Zavala , Cristina Valeriano , J.Julio Camarero
{"title":"历史上的森林使用限制了树木生长对干旱的反应:关于攻丝海松(Pinus pinaster)的案例研究","authors":"Cristopher Fernández-Blas , Paloma Ruiz-Benito , Antonio Gazol , Elena Granda , Eva Samblás , Irene Granado-Díaz , Miguel A. Zavala , Cristina Valeriano , J.Julio Camarero","doi":"10.1016/j.tfp.2024.100699","DOIUrl":null,"url":null,"abstract":"<div><div>Resin extraction from <em>Pinus pinaster</em> (maritime pine) trees was an important economic activity for most of the 20th century in Mediterranean forests, until the decrease in resin prices that led to their abandonment in the 1960s-1970s. Reduced tree growth is often observed after long periods of resin tapping, but it is unknown how these formerly tapped stands respond to recent climate warming and aridification. We sampled three historically tapped maritime pine stands in Teruel, eastern Spain, to understand differential growth and responses to climate in resin tapped and non-tapped trees. Using dendrochronological methods, we compared tree growth trends and responses to climate in tapped and non-tapped trees. Overall, tree growth was higher in resin tapped trees than in non-tapped trees, which were generally younger. However, tree growth decreased over time, increasing the negative effects of late spring temperatures, summer drought and reduced summer precipitation, with increased sensitivity to drought in tapped than non-tapped trees. Among tapped trees, those with larger wound area grew more than those less tapped, and were more sensitive to drought, particularly after the 80 s. Our results suggest that the legacy effects of previous management can constrain tree responses to climate change by increasing the sensitivity of tree growth to drought.</div></div>","PeriodicalId":36104,"journal":{"name":"Trees, Forests and People","volume":"18 ","pages":"Article 100699"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical forest use constrains tree growth responses to drought: A case study on tapped maritime pine (Pinus pinaster)\",\"authors\":\"Cristopher Fernández-Blas , Paloma Ruiz-Benito , Antonio Gazol , Elena Granda , Eva Samblás , Irene Granado-Díaz , Miguel A. Zavala , Cristina Valeriano , J.Julio Camarero\",\"doi\":\"10.1016/j.tfp.2024.100699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resin extraction from <em>Pinus pinaster</em> (maritime pine) trees was an important economic activity for most of the 20th century in Mediterranean forests, until the decrease in resin prices that led to their abandonment in the 1960s-1970s. Reduced tree growth is often observed after long periods of resin tapping, but it is unknown how these formerly tapped stands respond to recent climate warming and aridification. We sampled three historically tapped maritime pine stands in Teruel, eastern Spain, to understand differential growth and responses to climate in resin tapped and non-tapped trees. Using dendrochronological methods, we compared tree growth trends and responses to climate in tapped and non-tapped trees. Overall, tree growth was higher in resin tapped trees than in non-tapped trees, which were generally younger. However, tree growth decreased over time, increasing the negative effects of late spring temperatures, summer drought and reduced summer precipitation, with increased sensitivity to drought in tapped than non-tapped trees. Among tapped trees, those with larger wound area grew more than those less tapped, and were more sensitive to drought, particularly after the 80 s. Our results suggest that the legacy effects of previous management can constrain tree responses to climate change by increasing the sensitivity of tree growth to drought.</div></div>\",\"PeriodicalId\":36104,\"journal\":{\"name\":\"Trees, Forests and People\",\"volume\":\"18 \",\"pages\":\"Article 100699\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trees, Forests and People\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666719324002061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees, Forests and People","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666719324002061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Historical forest use constrains tree growth responses to drought: A case study on tapped maritime pine (Pinus pinaster)
Resin extraction from Pinus pinaster (maritime pine) trees was an important economic activity for most of the 20th century in Mediterranean forests, until the decrease in resin prices that led to their abandonment in the 1960s-1970s. Reduced tree growth is often observed after long periods of resin tapping, but it is unknown how these formerly tapped stands respond to recent climate warming and aridification. We sampled three historically tapped maritime pine stands in Teruel, eastern Spain, to understand differential growth and responses to climate in resin tapped and non-tapped trees. Using dendrochronological methods, we compared tree growth trends and responses to climate in tapped and non-tapped trees. Overall, tree growth was higher in resin tapped trees than in non-tapped trees, which were generally younger. However, tree growth decreased over time, increasing the negative effects of late spring temperatures, summer drought and reduced summer precipitation, with increased sensitivity to drought in tapped than non-tapped trees. Among tapped trees, those with larger wound area grew more than those less tapped, and were more sensitive to drought, particularly after the 80 s. Our results suggest that the legacy effects of previous management can constrain tree responses to climate change by increasing the sensitivity of tree growth to drought.