利用布朗构型场对带有珠棒链的稀聚合物溶液进行多尺度流动模拟

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-09 DOI:10.1016/j.amc.2024.129091
Andreas Meier, Eberhard Bänsch, Florian Frank
{"title":"利用布朗构型场对带有珠棒链的稀聚合物溶液进行多尺度流动模拟","authors":"Andreas Meier,&nbsp;Eberhard Bänsch,&nbsp;Florian Frank","doi":"10.1016/j.amc.2024.129091","DOIUrl":null,"url":null,"abstract":"<div><div>We couple the momentum and mass balance equations with the bead-rod chain model (Kramers chain) to simulate non-Newtonian polymeric fluids using finite elements and the Brownian configuration field method. A suitable rod-length preserving discretization is presented, which is based on the ideas of Liu's algorithm <span><span>[28]</span></span> and generalized into the finite-element context. Additional details concerning the parallelization of the Brownian configuration field part of the simulation are discussed to achieve outstanding code runtimes on large computation clusters. The novel coupling enables the investigation of how the bead-rod chains influence the fluid flow. This is done with proof-of-concept simulations for the start-up shear flow and flow around a cylinder scenario in 2D that serve as a reference for future research. In the start-up shear flow scenario, the velocity overshoot effect, which is typical for polymeric fluids, is successfully demonstrated. In the more challenging flow around a cylinder scenario, we numerically confirm the viscoelastic drag reduction phenomenon by comparing the drag coefficients with a purely Newtonian Navier–Stokes solution.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale flow simulations of dilute polymeric solutions with bead-rod chains using Brownian configuration fields\",\"authors\":\"Andreas Meier,&nbsp;Eberhard Bänsch,&nbsp;Florian Frank\",\"doi\":\"10.1016/j.amc.2024.129091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We couple the momentum and mass balance equations with the bead-rod chain model (Kramers chain) to simulate non-Newtonian polymeric fluids using finite elements and the Brownian configuration field method. A suitable rod-length preserving discretization is presented, which is based on the ideas of Liu's algorithm <span><span>[28]</span></span> and generalized into the finite-element context. Additional details concerning the parallelization of the Brownian configuration field part of the simulation are discussed to achieve outstanding code runtimes on large computation clusters. The novel coupling enables the investigation of how the bead-rod chains influence the fluid flow. This is done with proof-of-concept simulations for the start-up shear flow and flow around a cylinder scenario in 2D that serve as a reference for future research. In the start-up shear flow scenario, the velocity overshoot effect, which is typical for polymeric fluids, is successfully demonstrated. In the more challenging flow around a cylinder scenario, we numerically confirm the viscoelastic drag reduction phenomenon by comparing the drag coefficients with a purely Newtonian Navier–Stokes solution.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005526\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005526","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们将动量和质量平衡方程与珠棒链模型(克拉默链)结合起来,使用有限元和布朗构型场方法模拟非牛顿流体。本文介绍了一种合适的杆长保留离散化方法,该方法基于刘氏算法[28]的思想,并将其推广到有限元环境中。此外,还讨论了模拟的布朗构型场部分的并行化细节,以便在大型计算集群上实现出色的代码运行时间。通过这种新颖的耦合,可以研究珠子-杆链如何影响流体流动。为此,我们对启动剪切流和环绕圆柱体的二维流动情景进行了概念验证模拟,为今后的研究提供参考。在启动剪切流情况下,成功证明了速度过冲效应,这是聚合物流体的典型特征。在更具挑战性的绕圆柱体流动场景中,我们通过将阻力系数与纯牛顿纳维-斯托克斯解进行比较,从数值上证实了粘弹性阻力减小现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale flow simulations of dilute polymeric solutions with bead-rod chains using Brownian configuration fields
We couple the momentum and mass balance equations with the bead-rod chain model (Kramers chain) to simulate non-Newtonian polymeric fluids using finite elements and the Brownian configuration field method. A suitable rod-length preserving discretization is presented, which is based on the ideas of Liu's algorithm [28] and generalized into the finite-element context. Additional details concerning the parallelization of the Brownian configuration field part of the simulation are discussed to achieve outstanding code runtimes on large computation clusters. The novel coupling enables the investigation of how the bead-rod chains influence the fluid flow. This is done with proof-of-concept simulations for the start-up shear flow and flow around a cylinder scenario in 2D that serve as a reference for future research. In the start-up shear flow scenario, the velocity overshoot effect, which is typical for polymeric fluids, is successfully demonstrated. In the more challenging flow around a cylinder scenario, we numerically confirm the viscoelastic drag reduction phenomenon by comparing the drag coefficients with a purely Newtonian Navier–Stokes solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1