{"title":"测定含有铁氧化微生物的硫酸铁溶液中的饱和溶解氧浓度","authors":"Jason Glas, Dimitre Karamanev","doi":"10.1016/j.mineng.2024.109031","DOIUrl":null,"url":null,"abstract":"<div><div>Iron sulfate solutions and the extremophile lifeforms that can live within them are industrially and environmentally important in many applications and require proper assessments of solution properties. Determination of saturated dissolved oxygen concentration is an important parameter for monitoring iron biooxidation processes. However, its determination is not so straight forward using commercially available dissolved oxygen meters. Such meters utilize internal calculation models based on the saline properties of seawater which can be easily overlooked. A method for determination of the saturated dissolved oxygen concentration in acidic iron sulfate solutions with the inclusion of other inorganic salts is proposed in this work using the biooxidation of ferrous iron as an indicator measured with redox potential and converted to oxygen concentration through bioreaction stoichiometry. The technique was tested on a BioGenerator system over the course of four days and proved satisfactory in establishing a value for the saturated dissolved oxygen concentration of the bioreactor broth. Study of the lifespan properties of the microorganisms in absence of ferrous iron substrate was briefly examined to determine the effective handling period of solutions for assessment.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"218 ","pages":"Article 109031"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of saturated dissolved oxygen concentration in iron sulfate solutions containing iron oxidizing microorganisms\",\"authors\":\"Jason Glas, Dimitre Karamanev\",\"doi\":\"10.1016/j.mineng.2024.109031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iron sulfate solutions and the extremophile lifeforms that can live within them are industrially and environmentally important in many applications and require proper assessments of solution properties. Determination of saturated dissolved oxygen concentration is an important parameter for monitoring iron biooxidation processes. However, its determination is not so straight forward using commercially available dissolved oxygen meters. Such meters utilize internal calculation models based on the saline properties of seawater which can be easily overlooked. A method for determination of the saturated dissolved oxygen concentration in acidic iron sulfate solutions with the inclusion of other inorganic salts is proposed in this work using the biooxidation of ferrous iron as an indicator measured with redox potential and converted to oxygen concentration through bioreaction stoichiometry. The technique was tested on a BioGenerator system over the course of four days and proved satisfactory in establishing a value for the saturated dissolved oxygen concentration of the bioreactor broth. Study of the lifespan properties of the microorganisms in absence of ferrous iron substrate was briefly examined to determine the effective handling period of solutions for assessment.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":\"218 \",\"pages\":\"Article 109031\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687524004606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Determination of saturated dissolved oxygen concentration in iron sulfate solutions containing iron oxidizing microorganisms
Iron sulfate solutions and the extremophile lifeforms that can live within them are industrially and environmentally important in many applications and require proper assessments of solution properties. Determination of saturated dissolved oxygen concentration is an important parameter for monitoring iron biooxidation processes. However, its determination is not so straight forward using commercially available dissolved oxygen meters. Such meters utilize internal calculation models based on the saline properties of seawater which can be easily overlooked. A method for determination of the saturated dissolved oxygen concentration in acidic iron sulfate solutions with the inclusion of other inorganic salts is proposed in this work using the biooxidation of ferrous iron as an indicator measured with redox potential and converted to oxygen concentration through bioreaction stoichiometry. The technique was tested on a BioGenerator system over the course of four days and proved satisfactory in establishing a value for the saturated dissolved oxygen concentration of the bioreactor broth. Study of the lifespan properties of the microorganisms in absence of ferrous iron substrate was briefly examined to determine the effective handling period of solutions for assessment.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.