使用基于特征函数的线性状态空间表示法估算期权定价模型

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-08-01 DOI:10.1016/j.jeconom.2024.105864
H. Peter Boswijk , Roger J.A. Laeven , Evgenii Vladimirov
{"title":"使用基于特征函数的线性状态空间表示法估算期权定价模型","authors":"H. Peter Boswijk ,&nbsp;Roger J.A. Laeven ,&nbsp;Evgenii Vladimirov","doi":"10.1016/j.jeconom.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a novel filtering and estimation procedure for parametric option pricing models driven by general affine jump-diffusions. Our procedure is based on the comparison between an option-implied, model-free representation of the conditional log-characteristic function and the model-implied conditional log-characteristic function, which is functionally affine in the model’s state vector. We formally derive an associated linear state space representation and the asymptotic properties of the corresponding measurement errors. The state space representation allows us to use a suitably modified Kalman filtering technique to learn about the latent state vector and a quasi-maximum likelihood estimator of the model parameters, for which we establish asymptotic inference results. Accordingly, the filtering and estimation procedure brings important computational advantages. We analyze the finite-sample behavior of our procedure in Monte Carlo simulations. The applicability of our procedure is illustrated in two case studies that analyze S&amp;P 500 option prices and the impact of exogenous state variables capturing Covid-19 reproduction and economic policy uncertainty.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 1","pages":"Article 105864"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating option pricing models using a characteristic function-based linear state space representation\",\"authors\":\"H. Peter Boswijk ,&nbsp;Roger J.A. Laeven ,&nbsp;Evgenii Vladimirov\",\"doi\":\"10.1016/j.jeconom.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a novel filtering and estimation procedure for parametric option pricing models driven by general affine jump-diffusions. Our procedure is based on the comparison between an option-implied, model-free representation of the conditional log-characteristic function and the model-implied conditional log-characteristic function, which is functionally affine in the model’s state vector. We formally derive an associated linear state space representation and the asymptotic properties of the corresponding measurement errors. The state space representation allows us to use a suitably modified Kalman filtering technique to learn about the latent state vector and a quasi-maximum likelihood estimator of the model parameters, for which we establish asymptotic inference results. Accordingly, the filtering and estimation procedure brings important computational advantages. We analyze the finite-sample behavior of our procedure in Monte Carlo simulations. The applicability of our procedure is illustrated in two case studies that analyze S&amp;P 500 option prices and the impact of exogenous state variables capturing Covid-19 reproduction and economic policy uncertainty.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"244 1\",\"pages\":\"Article 105864\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002094\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002094","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为一般仿射跳跃扩散驱动的参数期权定价模型开发了一种新的过滤和估计程序。我们的程序基于条件对数特征函数的期权隐含、无模型表示与模型隐含的条件对数特征函数之间的比较,后者在模型的状态向量中是函数仿射的。我们正式推导出相关的线性状态空间表示和相应测量误差的渐近特性。有了状态空间表示法,我们就可以使用经过适当修改的卡尔曼滤波技术来了解潜在的状态向量和模型参数的准极大似然估计器,并为其建立渐近推理结果。因此,滤波和估计程序具有重要的计算优势。我们在蒙特卡罗模拟中分析了程序的有限样本行为。我们在两个案例研究中说明了我们程序的适用性,这两个案例研究分析了 S&P 500 期权价格以及捕捉 Covid-19 繁殖和经济政策不确定性的外生状态变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating option pricing models using a characteristic function-based linear state space representation
We develop a novel filtering and estimation procedure for parametric option pricing models driven by general affine jump-diffusions. Our procedure is based on the comparison between an option-implied, model-free representation of the conditional log-characteristic function and the model-implied conditional log-characteristic function, which is functionally affine in the model’s state vector. We formally derive an associated linear state space representation and the asymptotic properties of the corresponding measurement errors. The state space representation allows us to use a suitably modified Kalman filtering technique to learn about the latent state vector and a quasi-maximum likelihood estimator of the model parameters, for which we establish asymptotic inference results. Accordingly, the filtering and estimation procedure brings important computational advantages. We analyze the finite-sample behavior of our procedure in Monte Carlo simulations. The applicability of our procedure is illustrated in two case studies that analyze S&P 500 option prices and the impact of exogenous state variables capturing Covid-19 reproduction and economic policy uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1