500 兆瓦切向公用事业锅炉中的 NH3 联合燃烧策略:混合方法的影响

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-10-03 DOI:10.1016/j.joei.2024.101854
{"title":"500 兆瓦切向公用事业锅炉中的 NH3 联合燃烧策略:混合方法的影响","authors":"","doi":"10.1016/j.joei.2024.101854","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia co-firing is increasingly regarded as an effective strategy to reduce CO<sub>2</sub> emissions in coal-fired boilers. In this study, we introduce and evaluate two innovative fuel blending methods for ammonia-coal co-firing in a commercial 500 MW utility boiler: burner blending and in-boiler blending. Using computational fluid dynamics simulations, we investigated the effects of 20 % ammonia co-firing on heat transfer efficiency, fuel burnout rate, and pollutant emissions. The results show that while ammonia co-firing effectively reduces CO<sub>2</sub> emissions, it also leads to decreases in the furnace and furnace exit-gas temperatures due to the lower flame temperature and increased moisture production. Specifically, the total heat absorption by the water walls and heat exchangers decreased by 4.58 % in the burner blending method and 2.27 % in the in-boiler blending method compared to that with pure coal combustion. Although ammonia co-firing suppresses the generation of thermal NO, overall NO emissions increase significantly due to the substantial release of fuel NO. However, the in-boiler blending method demonstrated superior NO reduction, reducing NO emissions by 13.48 ppm compared to the burner blending method. In addition, the in-boiler blending method showed better combustion stability, achieving faster ignition and reducing the amount of unburned carbon in fly ash by 0.97 %, compared to that with the burner blending method. This is likely due to the higher concentration of combustible gases near the burner in the in-boiler blending system. These findings indicate that the in-boiler blending method is more effective than the burner blending method for ammonia-coal co-firing in a 500 MW utility boiler. This provides valuable insights into the implementation of ammonia co-firing in commercial boilers as part of efforts to achieve carbon neutrality.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NH3 co-firing strategy in 500 MW tangential utility boiler: Impact of blending methods\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia co-firing is increasingly regarded as an effective strategy to reduce CO<sub>2</sub> emissions in coal-fired boilers. In this study, we introduce and evaluate two innovative fuel blending methods for ammonia-coal co-firing in a commercial 500 MW utility boiler: burner blending and in-boiler blending. Using computational fluid dynamics simulations, we investigated the effects of 20 % ammonia co-firing on heat transfer efficiency, fuel burnout rate, and pollutant emissions. The results show that while ammonia co-firing effectively reduces CO<sub>2</sub> emissions, it also leads to decreases in the furnace and furnace exit-gas temperatures due to the lower flame temperature and increased moisture production. Specifically, the total heat absorption by the water walls and heat exchangers decreased by 4.58 % in the burner blending method and 2.27 % in the in-boiler blending method compared to that with pure coal combustion. Although ammonia co-firing suppresses the generation of thermal NO, overall NO emissions increase significantly due to the substantial release of fuel NO. However, the in-boiler blending method demonstrated superior NO reduction, reducing NO emissions by 13.48 ppm compared to the burner blending method. In addition, the in-boiler blending method showed better combustion stability, achieving faster ignition and reducing the amount of unburned carbon in fly ash by 0.97 %, compared to that with the burner blending method. This is likely due to the higher concentration of combustible gases near the burner in the in-boiler blending system. These findings indicate that the in-boiler blending method is more effective than the burner blending method for ammonia-coal co-firing in a 500 MW utility boiler. This provides valuable insights into the implementation of ammonia co-firing in commercial boilers as part of efforts to achieve carbon neutrality.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003325\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003325","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氨煤共烧越来越被视为燃煤锅炉减少二氧化碳排放的有效策略。在本研究中,我们介绍并评估了在商用 500 兆瓦公用事业锅炉中进行氨煤共烧的两种创新燃料混合方法:燃烧器混合和锅炉内混合。通过计算流体动力学模拟,我们研究了 20% 氨水共燃对传热效率、燃料燃尽率和污染物排放的影响。结果表明,虽然氨气联合燃烧可有效减少二氧化碳排放,但由于火焰温度降低和水分产生增加,氨气联合燃烧也会导致炉膛和炉膛出口气体温度降低。具体而言,与纯煤燃烧相比,燃烧器掺烧法和锅炉内掺烧法的水壁和热交换器总吸热下降了 4.58%,锅炉内掺烧法下降了 2.27%。虽然氨水共燃抑制了热氮氧化物的产生,但由于燃料氮氧化物的大量释放,总体氮氧化物排放量显著增加。然而,与燃烧器掺烧法相比,锅炉内掺烧法能更好地减少氮氧化物的排放,氮氧化物排放量减少了 13.48 ppm。此外,与燃烧器掺烧法相比,沸腾炉内掺烧法的燃烧稳定性更好,点火速度更快,飞灰中的未燃碳量减少了 0.97%。这可能是由于沸腾炉内掺烧系统中燃烧器附近的可燃气体浓度更高。这些研究结果表明,在 500 兆瓦公用事业锅炉的氨煤共烧中,锅炉内掺烧方法比燃烧器掺烧方法更有效。这为在商业锅炉中实施氨气联合燃烧提供了宝贵的见解,是实现碳中和努力的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NH3 co-firing strategy in 500 MW tangential utility boiler: Impact of blending methods
Ammonia co-firing is increasingly regarded as an effective strategy to reduce CO2 emissions in coal-fired boilers. In this study, we introduce and evaluate two innovative fuel blending methods for ammonia-coal co-firing in a commercial 500 MW utility boiler: burner blending and in-boiler blending. Using computational fluid dynamics simulations, we investigated the effects of 20 % ammonia co-firing on heat transfer efficiency, fuel burnout rate, and pollutant emissions. The results show that while ammonia co-firing effectively reduces CO2 emissions, it also leads to decreases in the furnace and furnace exit-gas temperatures due to the lower flame temperature and increased moisture production. Specifically, the total heat absorption by the water walls and heat exchangers decreased by 4.58 % in the burner blending method and 2.27 % in the in-boiler blending method compared to that with pure coal combustion. Although ammonia co-firing suppresses the generation of thermal NO, overall NO emissions increase significantly due to the substantial release of fuel NO. However, the in-boiler blending method demonstrated superior NO reduction, reducing NO emissions by 13.48 ppm compared to the burner blending method. In addition, the in-boiler blending method showed better combustion stability, achieving faster ignition and reducing the amount of unburned carbon in fly ash by 0.97 %, compared to that with the burner blending method. This is likely due to the higher concentration of combustible gases near the burner in the in-boiler blending system. These findings indicate that the in-boiler blending method is more effective than the burner blending method for ammonia-coal co-firing in a 500 MW utility boiler. This provides valuable insights into the implementation of ammonia co-firing in commercial boilers as part of efforts to achieve carbon neutrality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Boosting light olefin production from pyrolysis of low-density polyethylene: A two-stage catalytic process The effects of NH3 pre-cracking and initial temperature on the intrinsic instability and NOx emissions of NH3/bio-syngas/air premixed flames Experimental study of ammonia energy ratio on combustion and emissions from ammonia-gasoline dual-fuel engine at various load conditions Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber Thermodynamic and molecular dynamics study of methane dry reforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1