生物多样性银行应该是储蓄银行还是贷款银行?

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2024-10-10 DOI:10.1016/j.ecocom.2024.101101
Martin Drechsler
{"title":"生物多样性银行应该是储蓄银行还是贷款银行?","authors":"Martin Drechsler","doi":"10.1016/j.ecocom.2024.101101","DOIUrl":null,"url":null,"abstract":"<div><div>Conservation offsets are increasingly used as an instrument for biodiversity conservation on private lands. Since the restoration of degraded land often involves uncertainties and time lags, conservation biologists have recommended that credits in conservation offset schemes be awarded only with the completion of the restoration process (“savings bank”). These arguments, however, ignore that such a scheme design may incur higher economic costs than a design in which credits are already awarded at the initiation of the restoration process (“lending bank”). Here a generic agent-based ecological-economic simulation model is developed to explore the cost-effectiveness of savings and lending banks. The economic model compartment considers spatially heterogeneous and dynamic conservation costs and time preferences in the landowners. The ecological compartment considers uncertainty in the duration and the success of restoration process, and in the metapopulation dynamics of a species described by the rates of local population extinction and the colonisation of empty habitat patches. By this the widely used offset metric of “habitat hectares” is replaced by “metapopulation viability” which is commonly used in conservation biology. It turns out that whether credits should be awarded at the initiation or with completion of restoration depends on the ecological and economic circumstances. Larger colonisation and extinction rates, e.g., tend to favour the awarding of credits with the initiation of habitat restoration.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"60 ","pages":"Article 101101"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should the biodiversity bank be a savings bank or a lending bank?\",\"authors\":\"Martin Drechsler\",\"doi\":\"10.1016/j.ecocom.2024.101101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conservation offsets are increasingly used as an instrument for biodiversity conservation on private lands. Since the restoration of degraded land often involves uncertainties and time lags, conservation biologists have recommended that credits in conservation offset schemes be awarded only with the completion of the restoration process (“savings bank”). These arguments, however, ignore that such a scheme design may incur higher economic costs than a design in which credits are already awarded at the initiation of the restoration process (“lending bank”). Here a generic agent-based ecological-economic simulation model is developed to explore the cost-effectiveness of savings and lending banks. The economic model compartment considers spatially heterogeneous and dynamic conservation costs and time preferences in the landowners. The ecological compartment considers uncertainty in the duration and the success of restoration process, and in the metapopulation dynamics of a species described by the rates of local population extinction and the colonisation of empty habitat patches. By this the widely used offset metric of “habitat hectares” is replaced by “metapopulation viability” which is commonly used in conservation biology. It turns out that whether credits should be awarded at the initiation or with completion of restoration depends on the ecological and economic circumstances. Larger colonisation and extinction rates, e.g., tend to favour the awarding of credits with the initiation of habitat restoration.</div></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"60 \",\"pages\":\"Article 101101\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X24000291\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000291","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

保护补偿越来越多地被用作保护私人土地生物多样性的手段。由于退化土地的恢复通常涉及不确定性和时间滞后,保护生物学家建议,保护补偿计划中的信用额度只有在恢复过程完成后才能授予("储蓄银行")。然而,这些论点忽视了这样的计划设计可能比在恢复过程开始时就授予信用额度的设计("贷款银行")产生更高的经济成本。本文开发了一个基于代理的通用生态经济模拟模型,以探讨储蓄银行和贷款银行的成本效益。经济模型部分考虑了空间异质性和动态保护成本以及土地所有者的时间偏好。生态部分考虑了恢复过程的持续时间和成功率的不确定性,以及由当地种群灭绝率和空旷栖息地定植率描述的物种元种群动态。因此,广泛使用的 "栖息地公顷数 "抵消指标被保护生物学中常用的 "元种群活力 "所取代。事实证明,是在恢复开始时还是在恢复完成时给予补偿,取决于生态和经济情况。例如,较高的殖民化率和灭绝率倾向于在开始恢复生境时授予信用点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Should the biodiversity bank be a savings bank or a lending bank?
Conservation offsets are increasingly used as an instrument for biodiversity conservation on private lands. Since the restoration of degraded land often involves uncertainties and time lags, conservation biologists have recommended that credits in conservation offset schemes be awarded only with the completion of the restoration process (“savings bank”). These arguments, however, ignore that such a scheme design may incur higher economic costs than a design in which credits are already awarded at the initiation of the restoration process (“lending bank”). Here a generic agent-based ecological-economic simulation model is developed to explore the cost-effectiveness of savings and lending banks. The economic model compartment considers spatially heterogeneous and dynamic conservation costs and time preferences in the landowners. The ecological compartment considers uncertainty in the duration and the success of restoration process, and in the metapopulation dynamics of a species described by the rates of local population extinction and the colonisation of empty habitat patches. By this the widely used offset metric of “habitat hectares” is replaced by “metapopulation viability” which is commonly used in conservation biology. It turns out that whether credits should be awarded at the initiation or with completion of restoration depends on the ecological and economic circumstances. Larger colonisation and extinction rates, e.g., tend to favour the awarding of credits with the initiation of habitat restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1