石榴石型固态电解质中用于增强离子电导率预测的数据改进

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-10-10 DOI:10.1016/j.ssi.2024.116713
Zakaria Kharbouch , Mustapha Bouchaara , Fadila Elkouihen , Abderrahmane Habbal , Ahmed Ratnani , Abdessamad Faik
{"title":"石榴石型固态电解质中用于增强离子电导率预测的数据改进","authors":"Zakaria Kharbouch ,&nbsp;Mustapha Bouchaara ,&nbsp;Fadila Elkouihen ,&nbsp;Abderrahmane Habbal ,&nbsp;Ahmed Ratnani ,&nbsp;Abdessamad Faik","doi":"10.1016/j.ssi.2024.116713","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for advanced energy storage drives an urgency to accelerate material discovery in solid-state electrolytes. In pursuit of this aim, this study presents an innovative methodology that integrates materials science insights with machine learning techniques to improve the ionic conductivity prediction in garnet-based solid electrolytes. Utilizing an expanded dataset comprising 362 data points, and exploiting easily obtainable pre-synthesis inputs, our approach incorporates rigorous data preprocessing inspired by materials science and machine learning methodologies. Through systematic feature selection and hyperparameter tuning, the model achieved an improved R-squared value of 0.85. This study highlights the efficacy of the proposed approach and underscores the potential of machine learning in streamlining materials discovery and design for next-generation solid-state batteries.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116713"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data refinement for enhanced ionic conductivity prediction in garnet-type solid-state electrolytes\",\"authors\":\"Zakaria Kharbouch ,&nbsp;Mustapha Bouchaara ,&nbsp;Fadila Elkouihen ,&nbsp;Abderrahmane Habbal ,&nbsp;Ahmed Ratnani ,&nbsp;Abdessamad Faik\",\"doi\":\"10.1016/j.ssi.2024.116713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The demand for advanced energy storage drives an urgency to accelerate material discovery in solid-state electrolytes. In pursuit of this aim, this study presents an innovative methodology that integrates materials science insights with machine learning techniques to improve the ionic conductivity prediction in garnet-based solid electrolytes. Utilizing an expanded dataset comprising 362 data points, and exploiting easily obtainable pre-synthesis inputs, our approach incorporates rigorous data preprocessing inspired by materials science and machine learning methodologies. Through systematic feature selection and hyperparameter tuning, the model achieved an improved R-squared value of 0.85. This study highlights the efficacy of the proposed approach and underscores the potential of machine learning in streamlining materials discovery and design for next-generation solid-state batteries.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"417 \",\"pages\":\"Article 116713\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002613\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002613","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对先进储能技术的需求推动了加快固态电解质材料发现的紧迫性。为了实现这一目标,本研究提出了一种创新方法,将材料科学见解与机器学习技术相结合,以改进石榴石基固体电解质的离子电导率预测。利用由 362 个数据点组成的扩展数据集,并利用容易获得的合成前输入,我们的方法结合了受材料科学和机器学习方法启发的严格数据预处理。通过系统的特征选择和超参数调整,模型的 R 方值提高到了 0.85。这项研究凸显了所提方法的功效,并强调了机器学习在简化下一代固态电池的材料发现和设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data refinement for enhanced ionic conductivity prediction in garnet-type solid-state electrolytes
The demand for advanced energy storage drives an urgency to accelerate material discovery in solid-state electrolytes. In pursuit of this aim, this study presents an innovative methodology that integrates materials science insights with machine learning techniques to improve the ionic conductivity prediction in garnet-based solid electrolytes. Utilizing an expanded dataset comprising 362 data points, and exploiting easily obtainable pre-synthesis inputs, our approach incorporates rigorous data preprocessing inspired by materials science and machine learning methodologies. Through systematic feature selection and hyperparameter tuning, the model achieved an improved R-squared value of 0.85. This study highlights the efficacy of the proposed approach and underscores the potential of machine learning in streamlining materials discovery and design for next-generation solid-state batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1