{"title":"用于伤口愈合和感染控制的生物仿生微粒中的智能掺铜粘土","authors":"Marco Ruggeri , Cristian Nomicisio , Christine Taviot-Guého , Barbara Vigani , Cinzia Boselli , Pietro Grisoli , Antonia Icaro Cornaglia , Eleonora Bianchi , César Viseras , Silvia Rossi , Giuseppina Sandri","doi":"10.1016/j.mtbio.2024.101292","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles’ antibacterial properties. Encouraging preclinical <em>in vitro</em> and <em>in vivo</em> results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101292"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart copper-doped clays in biomimetic microparticles for wound healing and infection control\",\"authors\":\"Marco Ruggeri , Cristian Nomicisio , Christine Taviot-Guého , Barbara Vigani , Cinzia Boselli , Pietro Grisoli , Antonia Icaro Cornaglia , Eleonora Bianchi , César Viseras , Silvia Rossi , Giuseppina Sandri\",\"doi\":\"10.1016/j.mtbio.2024.101292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles’ antibacterial properties. Encouraging preclinical <em>in vitro</em> and <em>in vivo</em> results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101292\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003533\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003533","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Smart copper-doped clays in biomimetic microparticles for wound healing and infection control
Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles’ antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).