功能性电刺激的鲁棒自适应 PID 控制,用于足下垂矫正

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-10-04 DOI:10.1016/j.conengprac.2024.106090
Ghazal Tanhaei , Hamed Habibi , William Holderbaum , Noureddin Nakhostin Ansari
{"title":"功能性电刺激的鲁棒自适应 PID 控制,用于足下垂矫正","authors":"Ghazal Tanhaei ,&nbsp;Hamed Habibi ,&nbsp;William Holderbaum ,&nbsp;Noureddin Nakhostin Ansari","doi":"10.1016/j.conengprac.2024.106090","DOIUrl":null,"url":null,"abstract":"<div><div>A robust, adaptive proportional–integral–derivative (PID) control strategy is presented for controlling ankle movement using a functional electrical stimulation (FES) neuroprosthesis. The presented control strategy leverages the structurally simple PID controller. Moreover, the proposed PID controller automatically tunes its gains without requiring prior knowledge of the musculoskeletal system. Thus, in contrast to previously proposed control strategies for FES, the proposed controller does not necessitate time-consuming model identification for each patient. Additionally, the computational cost of the controller is minimized by linking the PID gains and updating only the common gain. As a result, a model-free, structurally simple, and computationally inexpensive controller is achieved, making it suitable for wearable FES-based neuroprostheses. A Lyapunov stability analysis proves uniformly ultimately bounded (UUB) tracking of the joint angle. Results from the simulated and experimental trials indicate that the proposed PID controller demonstrates high tracking accuracy and fast convergence.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106090"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust adaptive PID control of functional electrical stimulation for drop-foot correction\",\"authors\":\"Ghazal Tanhaei ,&nbsp;Hamed Habibi ,&nbsp;William Holderbaum ,&nbsp;Noureddin Nakhostin Ansari\",\"doi\":\"10.1016/j.conengprac.2024.106090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A robust, adaptive proportional–integral–derivative (PID) control strategy is presented for controlling ankle movement using a functional electrical stimulation (FES) neuroprosthesis. The presented control strategy leverages the structurally simple PID controller. Moreover, the proposed PID controller automatically tunes its gains without requiring prior knowledge of the musculoskeletal system. Thus, in contrast to previously proposed control strategies for FES, the proposed controller does not necessitate time-consuming model identification for each patient. Additionally, the computational cost of the controller is minimized by linking the PID gains and updating only the common gain. As a result, a model-free, structurally simple, and computationally inexpensive controller is achieved, making it suitable for wearable FES-based neuroprostheses. A Lyapunov stability analysis proves uniformly ultimately bounded (UUB) tracking of the joint angle. Results from the simulated and experimental trials indicate that the proposed PID controller demonstrates high tracking accuracy and fast convergence.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"153 \",\"pages\":\"Article 106090\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002491\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002491","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种稳健的自适应比例积分派生(PID)控制策略,用于使用功能性电刺激(FES)神经假体控制踝关节运动。所提出的控制策略利用了结构简单的 PID 控制器。此外,所提出的 PID 控制器可自动调整其增益,而无需事先了解肌肉骨骼系统。因此,与之前提出的 FES 控制策略相比,所提出的控制器无需对每位患者进行耗时的模型识别。此外,通过连接 PID 增益并只更新公共增益,控制器的计算成本也降到了最低。因此,我们实现了一种无模型、结构简单、计算成本低廉的控制器,使其适用于基于 FES 的可穿戴式神经义肢。Lyapunov 稳定性分析证明了对关节角度的均匀最终有界(UUB)跟踪。模拟和实验结果表明,所提出的 PID 控制器跟踪精度高,收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust adaptive PID control of functional electrical stimulation for drop-foot correction
A robust, adaptive proportional–integral–derivative (PID) control strategy is presented for controlling ankle movement using a functional electrical stimulation (FES) neuroprosthesis. The presented control strategy leverages the structurally simple PID controller. Moreover, the proposed PID controller automatically tunes its gains without requiring prior knowledge of the musculoskeletal system. Thus, in contrast to previously proposed control strategies for FES, the proposed controller does not necessitate time-consuming model identification for each patient. Additionally, the computational cost of the controller is minimized by linking the PID gains and updating only the common gain. As a result, a model-free, structurally simple, and computationally inexpensive controller is achieved, making it suitable for wearable FES-based neuroprostheses. A Lyapunov stability analysis proves uniformly ultimately bounded (UUB) tracking of the joint angle. Results from the simulated and experimental trials indicate that the proposed PID controller demonstrates high tracking accuracy and fast convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights Editorial Board High-precision control of a robotic arm using frequency-based data-driven methods Multi-dynamic target coverage tracking control strategy based on multi-UAV collaboration A switched model predictive control with parametric weights-based mode transition strategy for a novel parallel hybrid electric vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1