空间相关性对集成无序介质彩色光伏组件性能的影响

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-10-05 DOI:10.1016/j.jqsrt.2024.109216
Jinan Zhai , Shangyu Zhang , Chong Zheng , Jiyun Tang , Linhua Liu
{"title":"空间相关性对集成无序介质彩色光伏组件性能的影响","authors":"Jinan Zhai ,&nbsp;Shangyu Zhang ,&nbsp;Chong Zheng ,&nbsp;Jiyun Tang ,&nbsp;Linhua Liu","doi":"10.1016/j.jqsrt.2024.109216","DOIUrl":null,"url":null,"abstract":"<div><div>Colored photovoltaic (PV) modules with integrated disordered coatings exhibit attractive potential for generating renewable electricity. However, most existing studies on these modules rely on the assumption that the disordered coatings are random systems, neglecting the effects of spatial correlation. In this work, we thoroughly investigate the effects of spatial correlation on the color properties and performance of colored PV modules with integrated disordered coatings, using the full-wave electromagnetic simulation techniques. Our findings indicate that increasing the degree of spatial correlation results in a sharper and narrower reflectance peak, while having a negligible impact on the peak position. This trend suggests that the spatial correlation offers an alternative strategy for producing more vivid color, although it is less effective in expanding the color range. On the other hand, the spatial correlation has little impact on the power conversion efficiency (PCE) of PV modules. Therefore, it is feasible to produce colored PV modules with more vivid colors without significantly affecting the PCE by simply adjusting the degree of spatial correlation.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109216"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of spatial correlation on the performance of colored photovoltaic modules with integrate disordered media\",\"authors\":\"Jinan Zhai ,&nbsp;Shangyu Zhang ,&nbsp;Chong Zheng ,&nbsp;Jiyun Tang ,&nbsp;Linhua Liu\",\"doi\":\"10.1016/j.jqsrt.2024.109216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Colored photovoltaic (PV) modules with integrated disordered coatings exhibit attractive potential for generating renewable electricity. However, most existing studies on these modules rely on the assumption that the disordered coatings are random systems, neglecting the effects of spatial correlation. In this work, we thoroughly investigate the effects of spatial correlation on the color properties and performance of colored PV modules with integrated disordered coatings, using the full-wave electromagnetic simulation techniques. Our findings indicate that increasing the degree of spatial correlation results in a sharper and narrower reflectance peak, while having a negligible impact on the peak position. This trend suggests that the spatial correlation offers an alternative strategy for producing more vivid color, although it is less effective in expanding the color range. On the other hand, the spatial correlation has little impact on the power conversion efficiency (PCE) of PV modules. Therefore, it is feasible to produce colored PV modules with more vivid colors without significantly affecting the PCE by simply adjusting the degree of spatial correlation.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109216\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003236\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003236","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

集成了无序涂层的彩色光伏(PV)模块在生产可再生能源电力方面具有诱人的潜力。然而,关于这些模块的现有研究大多基于无序涂层是随机系统的假设,忽略了空间相关性的影响。在这项工作中,我们利用全波电磁模拟技术,深入研究了空间相关性对集成无序涂层的彩色光伏组件的颜色特性和性能的影响。我们的研究结果表明,提高空间相关度会使反射峰值更尖锐、更狭窄,而对峰值位置的影响却微乎其微。这一趋势表明,空间相关性为产生更鲜艳的色彩提供了另一种策略,尽管它在扩大色彩范围方面效果较差。另一方面,空间相关性对光伏组件的功率转换效率(PCE)影响甚微。因此,只需调整空间相关度,就能生产出色彩更鲜艳的彩色光伏组件,而不会对 PCE 产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of spatial correlation on the performance of colored photovoltaic modules with integrate disordered media
Colored photovoltaic (PV) modules with integrated disordered coatings exhibit attractive potential for generating renewable electricity. However, most existing studies on these modules rely on the assumption that the disordered coatings are random systems, neglecting the effects of spatial correlation. In this work, we thoroughly investigate the effects of spatial correlation on the color properties and performance of colored PV modules with integrated disordered coatings, using the full-wave electromagnetic simulation techniques. Our findings indicate that increasing the degree of spatial correlation results in a sharper and narrower reflectance peak, while having a negligible impact on the peak position. This trend suggests that the spatial correlation offers an alternative strategy for producing more vivid color, although it is less effective in expanding the color range. On the other hand, the spatial correlation has little impact on the power conversion efficiency (PCE) of PV modules. Therefore, it is feasible to produce colored PV modules with more vivid colors without significantly affecting the PCE by simply adjusting the degree of spatial correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Update Granada–Amsterdam Light Scattering Database Line-shape parameters and their temperature dependence for self-broadened CO2 lines in the 296 K- 1250 K range by requantized classical molecular dynamics simulations The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule Impacts of scattering plane randomization on lidar multiple scattering polarization signals from water clouds Stark broadening of Sn II spectral lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1