利用具有滞后西格玛等温线的柔性金属有机框架优化真空变压吸附的替代模型

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS International Journal of Greenhouse Gas Control Pub Date : 2024-10-01 DOI:10.1016/j.ijggc.2024.104260
Yuya Takakura , Suryateja Ravutla , Jinsu Kim , Keisuke Ikeda , Hiroshi Kajiro , Tomoyuki Yajima , Junpei Fujiki , Fani Boukouvala , Matthew Realff , Yoshiaki Kawajiri
{"title":"利用具有滞后西格玛等温线的柔性金属有机框架优化真空变压吸附的替代模型","authors":"Yuya Takakura ,&nbsp;Suryateja Ravutla ,&nbsp;Jinsu Kim ,&nbsp;Keisuke Ikeda ,&nbsp;Hiroshi Kajiro ,&nbsp;Tomoyuki Yajima ,&nbsp;Junpei Fujiki ,&nbsp;Fani Boukouvala ,&nbsp;Matthew Realff ,&nbsp;Yoshiaki Kawajiri","doi":"10.1016/j.ijggc.2024.104260","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a process optimization study for a vacuum pressure swing adsorption (VPSA) process using a flexible metal-organic framework (MOF), which is gaining attention as a material to realize energy-efficient carbon dioxide capture processes. Many flexible MOFs exhibit sigmoidal adsorption isotherms with hysteresis, posing a challenge for simulation and optimization using a rigorous process model. In this study, we employ surrogate model optimization, where surrogate models using machine-learning algorithms were constructed from simulation of 903 operating conditions generated by Latin hypercube sampling. The surrogate models with the best performance were identified from 18 different surrogate options considering four design variables—adsorption pressure, desorption pressure, adsorption time, and desorption time. Using the best surrogate models, a multi-objective optimization problem was solved to identify the Pareto front among recovery, energy consumption, and bed size factor. Our analysis identified a distinct characteristic of VPSA using a flexible-MOF where purity and recovery are hardly affected by the feed volume.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"138 ","pages":"Article 104260"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate model optimization of vacuum pressure swing adsorption using a flexible metal organic framework with hysteretic sigmoidal isotherms\",\"authors\":\"Yuya Takakura ,&nbsp;Suryateja Ravutla ,&nbsp;Jinsu Kim ,&nbsp;Keisuke Ikeda ,&nbsp;Hiroshi Kajiro ,&nbsp;Tomoyuki Yajima ,&nbsp;Junpei Fujiki ,&nbsp;Fani Boukouvala ,&nbsp;Matthew Realff ,&nbsp;Yoshiaki Kawajiri\",\"doi\":\"10.1016/j.ijggc.2024.104260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a process optimization study for a vacuum pressure swing adsorption (VPSA) process using a flexible metal-organic framework (MOF), which is gaining attention as a material to realize energy-efficient carbon dioxide capture processes. Many flexible MOFs exhibit sigmoidal adsorption isotherms with hysteresis, posing a challenge for simulation and optimization using a rigorous process model. In this study, we employ surrogate model optimization, where surrogate models using machine-learning algorithms were constructed from simulation of 903 operating conditions generated by Latin hypercube sampling. The surrogate models with the best performance were identified from 18 different surrogate options considering four design variables—adsorption pressure, desorption pressure, adsorption time, and desorption time. Using the best surrogate models, a multi-objective optimization problem was solved to identify the Pareto front among recovery, energy consumption, and bed size factor. Our analysis identified a distinct characteristic of VPSA using a flexible-MOF where purity and recovery are hardly affected by the feed volume.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"138 \",\"pages\":\"Article 104260\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624002032\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对使用柔性金属有机框架(MOF)的真空变压吸附(VPSA)工艺进行了工艺优化研究。许多柔性 MOF 表现出具有滞后性的西格玛吸附等温线,这给使用严格的工艺模型进行模拟和优化带来了挑战。在本研究中,我们采用了代用模型优化方法,通过对拉丁超立方采样生成的 903 种操作条件进行模拟,利用机器学习算法构建代用模型。考虑到吸附压力、解吸压力、吸附时间和解吸时间这四个设计变量,从 18 种不同的代用方案中确定了性能最佳的代用模型。利用最佳代用模型,我们解决了一个多目标优化问题,以确定回收率、能耗和床层尺寸系数之间的帕累托前沿。我们的分析确定了使用柔性 MOF 的 VPSA 的一个显著特点,即纯度和回收率几乎不受进料量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surrogate model optimization of vacuum pressure swing adsorption using a flexible metal organic framework with hysteretic sigmoidal isotherms
This study presents a process optimization study for a vacuum pressure swing adsorption (VPSA) process using a flexible metal-organic framework (MOF), which is gaining attention as a material to realize energy-efficient carbon dioxide capture processes. Many flexible MOFs exhibit sigmoidal adsorption isotherms with hysteresis, posing a challenge for simulation and optimization using a rigorous process model. In this study, we employ surrogate model optimization, where surrogate models using machine-learning algorithms were constructed from simulation of 903 operating conditions generated by Latin hypercube sampling. The surrogate models with the best performance were identified from 18 different surrogate options considering four design variables—adsorption pressure, desorption pressure, adsorption time, and desorption time. Using the best surrogate models, a multi-objective optimization problem was solved to identify the Pareto front among recovery, energy consumption, and bed size factor. Our analysis identified a distinct characteristic of VPSA using a flexible-MOF where purity and recovery are hardly affected by the feed volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
期刊最新文献
Putting the genie back in the bottle: Decarbonizing petroleum with direct air capture and enhanced oil recovery A conceptual evaluation of the use of Ca(OH)2 for attaining carbon capture rates of 99% in the calcium looping process Determining the dominant factors controlling mineralization in three-dimensional fracture networks Conceptual design and evaluation of membrane gas separation-based CO2 recovery unit for CO2 electrolyzers employing anion exchange membranes Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1