Pengfei Liu , Xinran Zhu , Yuexin Han , Yanjun Li , Chuang Wen
{"title":"褐铁矿磁化焙烧过程中微孔的形成及其影响","authors":"Pengfei Liu , Xinran Zhu , Yuexin Han , Yanjun Li , Chuang Wen","doi":"10.1016/j.powtec.2024.120339","DOIUrl":null,"url":null,"abstract":"<div><div>As an abundant iron ore resource, limonite (mainly composed of goethite, hematite, lepidocrocite and other iron minerals) ore is seldom utilized due to its complex compositions, which has led to it lack mature processing methods. Magnetization roasting and magnetic separation is a promising method to process limonite ore. In this paper, the influence of microscopic pores on the reduction roasting of limonite ore was studied. X-ray diffraction, vibrating sample magnetometry, optical microscope, scanning electron microscopy, and the Brunauer-Emmett-Teller method of surface area analysis were used to study the dehydroxylation mechanism. The results indicated that goethite transformed into hematite, and the crystal structure of partly hematite probably changed when the dehydroxylation temperature increased from 600 °C to 1000 °C, making the sample more magnetic, the saturation magnetization increases significantly from 0.29 to 3.20 A·m<sup>2</sup>·kg<sup>−1</sup>. Simultaneously, SEM and BET showed the surface property has a big difference after roasting, more and more pores were generated with the temperature increased, then the specific surface area of the sample decreased from 75.94 to 0.59 m<sup>2</sup>·g<sup>−1</sup>. The reduction experiment results showed the dehydroxylation temperature has a significant effect on the reduction efficiency, the reduction time increased from 4 to 12.5 min with the temperature increased. This study has implications for the utilization of limonite ore using magnetization roasting technology.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"448 ","pages":"Article 120339"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micropores formation and effects in the magnetization roasting of limonite ore\",\"authors\":\"Pengfei Liu , Xinran Zhu , Yuexin Han , Yanjun Li , Chuang Wen\",\"doi\":\"10.1016/j.powtec.2024.120339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an abundant iron ore resource, limonite (mainly composed of goethite, hematite, lepidocrocite and other iron minerals) ore is seldom utilized due to its complex compositions, which has led to it lack mature processing methods. Magnetization roasting and magnetic separation is a promising method to process limonite ore. In this paper, the influence of microscopic pores on the reduction roasting of limonite ore was studied. X-ray diffraction, vibrating sample magnetometry, optical microscope, scanning electron microscopy, and the Brunauer-Emmett-Teller method of surface area analysis were used to study the dehydroxylation mechanism. The results indicated that goethite transformed into hematite, and the crystal structure of partly hematite probably changed when the dehydroxylation temperature increased from 600 °C to 1000 °C, making the sample more magnetic, the saturation magnetization increases significantly from 0.29 to 3.20 A·m<sup>2</sup>·kg<sup>−1</sup>. Simultaneously, SEM and BET showed the surface property has a big difference after roasting, more and more pores were generated with the temperature increased, then the specific surface area of the sample decreased from 75.94 to 0.59 m<sup>2</sup>·g<sup>−1</sup>. The reduction experiment results showed the dehydroxylation temperature has a significant effect on the reduction efficiency, the reduction time increased from 4 to 12.5 min with the temperature increased. This study has implications for the utilization of limonite ore using magnetization roasting technology.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"448 \",\"pages\":\"Article 120339\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024009835\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009835","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Micropores formation and effects in the magnetization roasting of limonite ore
As an abundant iron ore resource, limonite (mainly composed of goethite, hematite, lepidocrocite and other iron minerals) ore is seldom utilized due to its complex compositions, which has led to it lack mature processing methods. Magnetization roasting and magnetic separation is a promising method to process limonite ore. In this paper, the influence of microscopic pores on the reduction roasting of limonite ore was studied. X-ray diffraction, vibrating sample magnetometry, optical microscope, scanning electron microscopy, and the Brunauer-Emmett-Teller method of surface area analysis were used to study the dehydroxylation mechanism. The results indicated that goethite transformed into hematite, and the crystal structure of partly hematite probably changed when the dehydroxylation temperature increased from 600 °C to 1000 °C, making the sample more magnetic, the saturation magnetization increases significantly from 0.29 to 3.20 A·m2·kg−1. Simultaneously, SEM and BET showed the surface property has a big difference after roasting, more and more pores were generated with the temperature increased, then the specific surface area of the sample decreased from 75.94 to 0.59 m2·g−1. The reduction experiment results showed the dehydroxylation temperature has a significant effect on the reduction efficiency, the reduction time increased from 4 to 12.5 min with the temperature increased. This study has implications for the utilization of limonite ore using magnetization roasting technology.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.