Maike Orth , Matthias Börner , Swantje Pietsch-Braune , Stefan Heinrich
{"title":"喷雾参数对流化床喷雾造粒中喷射液滴和产品特性的影响","authors":"Maike Orth , Matthias Börner , Swantje Pietsch-Braune , Stefan Heinrich","doi":"10.1016/j.powtec.2024.120274","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid injection is one of the, if not the most, critical steps in fluidized bed spray granulation as the product quality as well as the overall process stability can be massively influenced by the associated parameters. Therefore, this study aims to correlate spray parameters to the spray pattern and droplets produced from the nozzle and the resulting granule properties. First, the effect of spray variables on spray angle and droplet size and velocity was analyzed, revealing the spray air pressure as crucial parameter. Afterwards, spray agglomeration experiments were conducted according to a statistical experimental plan varying several process-related parameters in addition to the nozzle set-up. The product particle size distribution was shown to be impacted by a complex combination of the investigated variables with the liquid spray rate, spray and protection air pressure, and fluidization air flow as main influences.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"448 ","pages":"Article 120274"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of spray parameters on injected droplets and product properties in fluidized bed spray granulation\",\"authors\":\"Maike Orth , Matthias Börner , Swantje Pietsch-Braune , Stefan Heinrich\",\"doi\":\"10.1016/j.powtec.2024.120274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liquid injection is one of the, if not the most, critical steps in fluidized bed spray granulation as the product quality as well as the overall process stability can be massively influenced by the associated parameters. Therefore, this study aims to correlate spray parameters to the spray pattern and droplets produced from the nozzle and the resulting granule properties. First, the effect of spray variables on spray angle and droplet size and velocity was analyzed, revealing the spray air pressure as crucial parameter. Afterwards, spray agglomeration experiments were conducted according to a statistical experimental plan varying several process-related parameters in addition to the nozzle set-up. The product particle size distribution was shown to be impacted by a complex combination of the investigated variables with the liquid spray rate, spray and protection air pressure, and fluidization air flow as main influences.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"448 \",\"pages\":\"Article 120274\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024009185\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of spray parameters on injected droplets and product properties in fluidized bed spray granulation
Liquid injection is one of the, if not the most, critical steps in fluidized bed spray granulation as the product quality as well as the overall process stability can be massively influenced by the associated parameters. Therefore, this study aims to correlate spray parameters to the spray pattern and droplets produced from the nozzle and the resulting granule properties. First, the effect of spray variables on spray angle and droplet size and velocity was analyzed, revealing the spray air pressure as crucial parameter. Afterwards, spray agglomeration experiments were conducted according to a statistical experimental plan varying several process-related parameters in addition to the nozzle set-up. The product particle size distribution was shown to be impacted by a complex combination of the investigated variables with the liquid spray rate, spray and protection air pressure, and fluidization air flow as main influences.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.