带有表面输入源的有限和弯曲多孔介质中的三维溶质输运

IF 4.9 Q2 ENGINEERING, ENVIRONMENTAL Groundwater for Sustainable Development Pub Date : 2024-09-25 DOI:10.1016/j.gsd.2024.101349
{"title":"带有表面输入源的有限和弯曲多孔介质中的三维溶质输运","authors":"","doi":"10.1016/j.gsd.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an analytical solution for three-dimensional solute transport in porous media between two curved surfaces is investigated. It is assumed that the groundwater velocity and dispersion coefficient vary with time and position. Groundwater velocity is not considered to be horizontal. The components of dispersion coefficient along the axes are considered to be proportional to the square of corresponding the position variable. The dispersion coefficient components along axes are proportional to the corresponding component of groundwater velocity in temporal aspects while former is squarely proportional to letter one in position components. It is assumed that the sources originate from two curved surfaces. The nature of the source on the two surfaces is the same, but there may be a variation in potential. Initially, the aquifer's domain is supposed to be uniformly polluted. The Laplace Integral Transformation Technique (LITT) is used to obtain analytical solutions. Numerical examples are given to demonstrate the effects of various factors on the solute concentration profile in a system where advection and dispersion play important roles.</div><div>In addition, the sub-case of horizontal flow is also discussed. The model is extremely useful in analyzing and dealing with widespread surface sources of groundwater pollution in simulated agricultural fields or urban dumping areas.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional solute transport in finite and curved porous media with surface input sources\",\"authors\":\"\",\"doi\":\"10.1016/j.gsd.2024.101349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an analytical solution for three-dimensional solute transport in porous media between two curved surfaces is investigated. It is assumed that the groundwater velocity and dispersion coefficient vary with time and position. Groundwater velocity is not considered to be horizontal. The components of dispersion coefficient along the axes are considered to be proportional to the square of corresponding the position variable. The dispersion coefficient components along axes are proportional to the corresponding component of groundwater velocity in temporal aspects while former is squarely proportional to letter one in position components. It is assumed that the sources originate from two curved surfaces. The nature of the source on the two surfaces is the same, but there may be a variation in potential. Initially, the aquifer's domain is supposed to be uniformly polluted. The Laplace Integral Transformation Technique (LITT) is used to obtain analytical solutions. Numerical examples are given to demonstrate the effects of various factors on the solute concentration profile in a system where advection and dispersion play important roles.</div><div>In addition, the sub-case of horizontal flow is also discussed. The model is extremely useful in analyzing and dealing with widespread surface sources of groundwater pollution in simulated agricultural fields or urban dumping areas.</div></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X24002728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多孔介质在两个曲面之间的三维溶质输运的解析解。假设地下水速度和扩散系数随时间和位置变化。地下水速度不被认为是水平的。沿轴向的分散系数分量被认为与相应位置变量的平方成正比。在时间方面,沿轴的弥散系数分量与地下水流速的相应分量成正比,而在位置分量方面,前者与字母一成正比。假设水源来自两个曲面。两个曲面上的水源性质相同,但水势可能不同。初始情况下,含水层域假定受到均匀污染。利用拉普拉斯积分变换技术(LITT)获得解析解。此外,还讨论了水平流动的子情况。该模型在分析和处理模拟农田或城市垃圾堆放区广泛存在的地下水面源污染时非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional solute transport in finite and curved porous media with surface input sources
In this paper, an analytical solution for three-dimensional solute transport in porous media between two curved surfaces is investigated. It is assumed that the groundwater velocity and dispersion coefficient vary with time and position. Groundwater velocity is not considered to be horizontal. The components of dispersion coefficient along the axes are considered to be proportional to the square of corresponding the position variable. The dispersion coefficient components along axes are proportional to the corresponding component of groundwater velocity in temporal aspects while former is squarely proportional to letter one in position components. It is assumed that the sources originate from two curved surfaces. The nature of the source on the two surfaces is the same, but there may be a variation in potential. Initially, the aquifer's domain is supposed to be uniformly polluted. The Laplace Integral Transformation Technique (LITT) is used to obtain analytical solutions. Numerical examples are given to demonstrate the effects of various factors on the solute concentration profile in a system where advection and dispersion play important roles.
In addition, the sub-case of horizontal flow is also discussed. The model is extremely useful in analyzing and dealing with widespread surface sources of groundwater pollution in simulated agricultural fields or urban dumping areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Groundwater for Sustainable Development
Groundwater for Sustainable Development Social Sciences-Geography, Planning and Development
CiteScore
11.50
自引率
10.20%
发文量
152
期刊介绍: Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.
期刊最新文献
Spatial and temporal variations of dug well water quality in Korba basin, Chhattisgarh, India: Insights into hydrogeological characteristics Investigating the role of groundwater in ecosystem water use efficiency in India considering irrigation, climate and land use Assessing anthropogenic and natural influences on water quality in a critical shallow groundwater system: Insights from the Metauro River basin (Central Italy) Microplastics in water from the Cooum River, Chennai, India: An assessment of their distribution, composition, and environmental impact Effect of salinity-clay variation on the transient magnetic field in the Quaternary aquifer, theoretically and practically
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1