{"title":"单层石墨烯和 MX2(M=Mo、W;X=S、Se、Te)的价电子结构和性质的相关性:经验电子理论 (EET) 研究","authors":"Xinze Wang, Yongquan Guo, Boyang Li, Yichen Feng, Wei Tang","doi":"10.1016/j.physe.2024.116124","DOIUrl":null,"url":null,"abstract":"<div><div>The atomically thin layers of transition-metal dichalcogenide (TMDC) materials have garnered considerable attention due to their exceptional electrical, optical, mechanical, and thermal properties. Hence, it is important to investigate the mechanism of their excellent properties. In this paper, the study is focused on the correlation between valence electron structures (VESs) and mechanical as well as thermal properties of graphene and MX<sub>2</sub> (M = Mo, W; X = S, Se, Te) for revealing their essential mechanisms of properties with an empirical electron theory (EET). A model of Young's modulus is built for the monolayer graphene and MX<sub>2</sub> (M = Mo, W; X = S, Se, Te) based on the VES, which has been verified by the observed ones of elements in the 4th to 6th periods in the periodic table of elements. The calculated bond lengths and mechanical and thermal properties of graphene and MX<sub>2</sub> are in good agreement with experimental ones. The study reveals that the thermal and mechanical properties of MX<sub>2</sub> strongly depend on their valence electron structures. It shows that the melting point, cohesive energy, thermal conductivity, and Young's modulus are modulated by covalence electron pair <em>n</em><sub><em>A</em></sub>, the averaged covalence electron per atom <em>n</em><sub><em>c</em></sub>/atom, covalence electron pair <em>n</em><sub><em>A</em></sub> and linear density of covalent electron on the strongest bond <em>ρ</em><sub><em>l</em></sub>, respectively. The study helps explain the thermal and mechanical properties of two-dimensional (2D) materials and also supplies a reference for their design with high performance by modulating their valence electron structures.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116124"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of Valence electron structure and properties of monolayer graphene and MX2 (M=Mo, W; X=S, Se, Te): Empirical Electron Theory (EET) investigation\",\"authors\":\"Xinze Wang, Yongquan Guo, Boyang Li, Yichen Feng, Wei Tang\",\"doi\":\"10.1016/j.physe.2024.116124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The atomically thin layers of transition-metal dichalcogenide (TMDC) materials have garnered considerable attention due to their exceptional electrical, optical, mechanical, and thermal properties. Hence, it is important to investigate the mechanism of their excellent properties. In this paper, the study is focused on the correlation between valence electron structures (VESs) and mechanical as well as thermal properties of graphene and MX<sub>2</sub> (M = Mo, W; X = S, Se, Te) for revealing their essential mechanisms of properties with an empirical electron theory (EET). A model of Young's modulus is built for the monolayer graphene and MX<sub>2</sub> (M = Mo, W; X = S, Se, Te) based on the VES, which has been verified by the observed ones of elements in the 4th to 6th periods in the periodic table of elements. The calculated bond lengths and mechanical and thermal properties of graphene and MX<sub>2</sub> are in good agreement with experimental ones. The study reveals that the thermal and mechanical properties of MX<sub>2</sub> strongly depend on their valence electron structures. It shows that the melting point, cohesive energy, thermal conductivity, and Young's modulus are modulated by covalence electron pair <em>n</em><sub><em>A</em></sub>, the averaged covalence electron per atom <em>n</em><sub><em>c</em></sub>/atom, covalence electron pair <em>n</em><sub><em>A</em></sub> and linear density of covalent electron on the strongest bond <em>ρ</em><sub><em>l</em></sub>, respectively. The study helps explain the thermal and mechanical properties of two-dimensional (2D) materials and also supplies a reference for their design with high performance by modulating their valence electron structures.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116124\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002285\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002285","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Correlation of Valence electron structure and properties of monolayer graphene and MX2 (M=Mo, W; X=S, Se, Te): Empirical Electron Theory (EET) investigation
The atomically thin layers of transition-metal dichalcogenide (TMDC) materials have garnered considerable attention due to their exceptional electrical, optical, mechanical, and thermal properties. Hence, it is important to investigate the mechanism of their excellent properties. In this paper, the study is focused on the correlation between valence electron structures (VESs) and mechanical as well as thermal properties of graphene and MX2 (M = Mo, W; X = S, Se, Te) for revealing their essential mechanisms of properties with an empirical electron theory (EET). A model of Young's modulus is built for the monolayer graphene and MX2 (M = Mo, W; X = S, Se, Te) based on the VES, which has been verified by the observed ones of elements in the 4th to 6th periods in the periodic table of elements. The calculated bond lengths and mechanical and thermal properties of graphene and MX2 are in good agreement with experimental ones. The study reveals that the thermal and mechanical properties of MX2 strongly depend on their valence electron structures. It shows that the melting point, cohesive energy, thermal conductivity, and Young's modulus are modulated by covalence electron pair nA, the averaged covalence electron per atom nc/atom, covalence electron pair nA and linear density of covalent electron on the strongest bond ρl, respectively. The study helps explain the thermal and mechanical properties of two-dimensional (2D) materials and also supplies a reference for their design with high performance by modulating their valence electron structures.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures